lecture no 5
play

Lecture no: 5 Digital modulation Ove Edfors, Department of - PowerPoint PPT Presentation

RADIO SYSTEMS ETIN15 Lecture no: 5 Digital modulation Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2011-03-28 Ove Edfors - ETIN15 1 Contents Brief overview of a wireless communication link


  1. RADIO SYSTEMS – ETIN15 Lecture no: 5 Digital modulation Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2011-03-28 Ove Edfors - ETIN15 1

  2. Contents • Brief overview of a wireless communication link • Radio signals and complex notation (again) • Modulation basics • Important modulation formats 2012-03-26 Ove Edfors - ETIN15 2

  3. STRUCTURE OF A WIRELESS COMMUNICATION LINK 2012-03-26 Ove Edfors - ETIN15 3

  4. A simple structure Speech Speech Chann. A/D Encrypt. Modulation encoder encoding Data Key Speech Speech Chann. D/A Decrypt. Demod. decoder decoding Data (Read Chapter 10 for more details) 2012-03-26 Ove Edfors - ETIN15 4

  5. RADIO SIGNALS AND COMPLEX NOTATION (from Lecture 3) 2012-03-26 Ove Edfors - ETIN15 5

  6. Simple model of a radio signal • A transmitted radio signal can be written ( ) ( ) = π + φ s t A cos 2 ft Amplitude Frequency Phase • By letting the transmitted information change the amplitude, the frequency, or the phase, we get the tree basic types of digital modulation techniques – ASK (Amplitude Shift Keying) – FSK (Frequency Shift Keying) Constant amplitude – PSK (Phase Shift Keying) 2012-03-26 Ove Edfors - ETIN15 6

  7. The IQ modulator ( ) s t I I-channel ( ) Transmited radio signal (in-phase) π cos 2 f t c ( ) ( ) ( ) = π f s t s t cos 2 f t c I c ( ) ( ) − π s t sin 2 f t Q c o -90 ( ) − π ( ) sin 2 f t s t c Q Q-channel (quadrature) Take a step into the complex domain: s  t = s I  t  j s Q  t   Complex envelope s  t = Re {  j 2  f c t } s  t  e π j 2 f t e Carrier factor c 2012-03-26 Ove Edfors - ETIN15 7

  8. Interpreting the complex notation Complex envelope (phasor) Transmitted radio signal Q ( ) s  t  s t  Re {  j 2  f c t } Q s  t  = s  t  e ( ) ( ) A t φ t Re { A  t  e j 2  f c t } j  t  e = ( ) s t I Re { A  t  e j  2  f c t  t  } = I = A  t  cos  2  f c t  t  Polar coordinates: By manipulating the amplitude A (t) j  t  s  t = s I  t  j s Q  t = A  t  e  and the phase Φ (t) of the complex envelope (phasor), we can create any type of modulation/radio signal. 2012-03-26 Ove Edfors - ETIN15 8

  9. Example: Amplitude, phase and frequency modulation ( ) ( ) ( ) ( ) = π + φ s t A t cos 2 f t t c ( ) ( ) φ A t t Comment: 00 01 11 00 10 - Amplitude carries information 4ASK - Phase constant (arbitrary) 00 01 11 00 10 - Amplitude constant (arbitrary) 4PSK - Phase carries information 00 01 11 00 10 - Amplitude constant (arbitrary) - Phase slope (frequency) 4FSK carries information 2012-03-26 Ove Edfors - ETIN15 9

  10. MODULATION BASICS 2012-03-26 Ove Edfors - ETIN15 10

  11. Pulse amplitude modulation (PAM) The modulation process Complex domain Bits Radio ( ) b c s t signal m m LP Mapping PAM Re{ } ( ) π exp j 2 f t Complex c numbers Symbol ∞ Many possible pulses s LP  t = ∑ c m g  t − mT s  time ( ) PAM: g t m =−∞ “Standard” basis pulse criteria t ∞ ( ) ∫ 2 dt = 1 or = T s g t ∣ g  t  ∣ (energy norm.) −∞ ∞ ∫ *  t − mT s  dt = 0 for m ≠ 0 (orthogonality) g  t  g t T −∞ s 2012-03-26 Ove Edfors - ETIN15 11

  12. Pulse amplitude modulation (PAM) Basis pulses and spectrum Assuming that the complex numbers c m representing the data are independent, then the power spectral density of the base band PAM signal becomes: S LP  f ~ ∣ ∫ − j 2  f t dt ∣ ∞ 2 g  t  e −∞ which translates into a radio signal (band pass) with 1 ( ) ( ) ( ) ( ) = − + − − S f S f f S f f BP LP c LP c 2 2012-03-26 Ove Edfors - ETIN15 12

  13. Pulse amplitude modulation (PAM) Basis pulses and spectrum Illustration of power spectral density of the (complex) base-band signal, S LP ( f ), and the (real) radio signal, S BP ( f ). ( ) ( ) S f S f LP BP − f f f f c c Can be asymmetric, since it is a complex Symmetry (real radio signal) signal. What we need are basis pulses g ( t ) with nice properties like: - Narrow spectrum (low side-lobes) - Relatively short in time (low delay) 2012-03-26 Ove Edfors - ETIN15 13

  14. Pulse amplitude modulation (PAM) Basis pulses TIME DOMAIN FREQ. DOMAIN Rectangular [in time] Normalized time / t T Normalized freq. f × T s s (Root-) Raised-cosine [in freq.] Normalized freq. f × T s Normalized time / t T s 2012-03-26 Ove Edfors - ETIN15 14

  15. Pulse amplitude modulation (PAM) Interpretation as IQ-modulator For real valued basis functions g ( t ) we can view PAM as: ( ) ( ) ( ) = s t Re s t I LP ( ) Re c m ( ) g t ( ) π cos 2 f t c Radio Pulse b c f signal c m m Mapping shaping filters o -90 ( ) − π sin 2 f t c ( ) g t ( ) Im c m ( ) ( ) ( ) = s t Im s t Q LP (Both the rectangular and the (root-) raised-cosine pulses are real valued.) 2012-03-26 Ove Edfors - ETIN15 15

  16. Multi-PAM Modulation with multiple pulses Complex domain Bits Radio ( ) b c s t signal m m LP Mapping multi-PAM Re{ } ( ) π exp j 2 f t c ∞ s LP  t = ∑ g c m  t − mT s  multi-PAM: m −∞ “Standard” basis pulse criteria Several ∫ ∣ g c m  t  ∣ 2 dt = 1 or = T s different (energy norm.) *  t − kT s  dt = 0 for k ≠ 0 pulses ∫ g c m  t  g c m (orthogonality) *  t  dt = 0 for c m ≠ c n ∫ g c m  t  g c n (orthogonality) 2012-03-26 Ove Edfors - ETIN15 16

  17. Multi-PAM Modulation with multiple pulses Frequency-shift keying (FSK) with M (even) different transmission frequencies can be interpreted as multi-PAM if the basis functions are chosen as: − j  k  f t for 0 ≤ t ≤ T s g k  t = e and for k = +/- 1, +/- 3, ... , +/- M/2 S LP  f  S BP  f  − f f c c ∆ f Bits: 00 01 10 11 2012-03-26 Ove Edfors - ETIN15 17

  18. Continuous-phase FSK (CPFSK) The modulation process Complex domain Bits Radio ( ) b c s t signal m m LP Mapping CPFSK Re{ } ( ) π exp j 2 f t c s LP  t = A exp  j  CPFSK  t   CPFSK: where the amplitude A is constant and the phase is t ∞  CPFSK  t = 2  h mod ∑ c m ∫ g  u − mT  du  m =−∞ −∞ Phase basis where h mod is the modulation index. pulse 2012-03-26 Ove Edfors - ETIN15 18

  19. Continuous-phase FSK (CPFSK) The Gaussian phase basis pulse In addition to the rectangular phase basis pulse, the Gaussian is the most common. BT s =0.5 Normalized time / t T s 2012-03-26 Ove Edfors - ETIN15 19

  20. IMPORTANT MODULATION FORMATS 2012-03-26 Ove Edfors - ETIN15 20

  21. Binary phase-shift keying (BPSK) Rectangular pulses Base-band Radio signal 2012-03-26 Ove Edfors - ETIN15 21

  22. Binary phase-shift keying (BPSK) Rectangular pulses Complex representation Signal constellation diagram 2012-03-26 Ove Edfors - ETIN15 22

  23. Binary phase-shift keying (BPSK) Rectangular pulses Power spectral density for BPSK Normalized freq. f × T b 2012-03-26 Ove Edfors - ETIN15 23

  24. Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5) Base-band Radio signal 2012-03-26 Ove Edfors - ETIN15 24

  25. Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5) Complex representation Signal constellation diagram 2012-03-26 Ove Edfors - ETIN15 25

  26. Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5) Power spectral density for BAM Normalized freq. f × T b Much higher spectral efficiency than BPSK (with rectangular pulses). 2012-03-26 Ove Edfors - ETIN15 26

  27. Quaternary PSK (QPSK or 4-PSK) Rectangular pulses Complex representation Radio signal 2012-03-26 Ove Edfors - ETIN15 27

  28. Quaternary PSK (QPSK or 4-PSK) Rectangular pulses Power spectral density for QPSK Twice the spectrum efficiency of BPSK (with rect. pulses). TWO bits/pulse instead of one. 2012-03-26 Ove Edfors - ETIN15 28

  29. Quadrature ampl.-modulation (QAM) Root raised-cos pulses (roll-off 0.5) Complex representation Much higher spectral efficiency than QPSK (with rectangular pulses). 2012-03-26 Ove Edfors - ETIN15 29

  30. Amplitude variations The problem Signals with high amplitude variations leads to less efficient amplifiers. Complex representation of QPSK It is a problem that the signal passes through the origin, where the amplitude is ZERO. (Infinite amplitude variation.) Can we solve this problem in a simple way? 2012-03-26 Ove Edfors - ETIN15 30

  31. Amplitude variations A solution Let’s rotate the signal constellation diagram for each transmitted symbol! / 4 2 ×/ 4 etc. 2012-03-26 Ove Edfors - ETIN15 31

  32. Amplitude variations A solution Looking at the complex representation ... QPSK without rotation QPSK with rotation A “hole” is created in the center. No close to zero amplitudes. 2012-03-26 Ove Edfors - ETIN15 32

Recommend


More recommend