lecture 4
play

Lecture 4 - Polarisation of the CMB (continued) - Gravitational - PowerPoint PPT Presentation

Lecture 4 - Polarisation of the CMB (continued) - Gravitational waves and their imprints on the CMB The Single Most Important Thing You Need to Remember Polarisation is generated by the local quadrupole temperature anisotropy , which is


  1. Lecture 4 - Polarisation of the CMB (continued) - Gravitational waves and their imprints on the CMB

  2. The Single Most Important Thing You Need to Remember • Polarisation is generated by the local quadrupole temperature anisotropy , which is proportional to viscosity

  3. (l,m)=(2,0) (l,m)=(2,1) (l,m)=(2,2) Local quadrupole temperature anisotropy seen from an electron

  4. (l,m)=(2,0) (l,m)=(2,1) L e t ’ s ( l , s m y (l,m)=(2,2) m ) = b ( 2 o , 0 l Hot i ) s e a s Cold Cold Hot

  5. (l,m)=(2,0) (l,m)=(2,1) L e t ’ s ( l , s m y (l,m)=(2,2) m ) = b ( 2 o , 0 l i ) s e a s Polarisation pattern you will see

  6. r L Polarisation pattern in the sky generated by a single Fourier mode

  7. E-mode! r L Polarisation pattern in the sky generated by a single Fourier mode

  8. E-mode Power Spectrum • Viscosity at the last-scattering surface is given by the velocity potential: • Velocity potential is Sin(qr L ) , whereas the temperature power spectrum is predominantly Cos(qr L )

  9. Bennett et al. (2013) WMAP 9-year Power Spectrum

  10. Planck Collaboration (2016) Planck 29-mo Power Spectrum

  11. South Pole Telescope Collaboration (2018) SPTPol Power Spectrum

  12. [1] Trough in T -> Peak in E because C lTT ~ cos 2 (qr s ) whereas C lEE ~ sin 2 (qr s ) [2] T damps -> E rises because T damps by viscosity, whereas E is created by viscosity [3] E Peaks are sharper because C lTT is the sum of cos 2 (qr L ) and Doppler shift’s sin 2 (qr L ), whereas C lEE is just sin 2 (qr L )

  13. [1] Trough in T -> Peak in E because C lTT ~ cos 2 (qr s ) whereas C lEE ~ sin 2 (qr s ) [2] T damps -> E rises because T damps by viscosity, whereas E is created by viscosity [3] E Peaks are sharper because C lTT is the sum of cos 2 (qr L ) and Doppler shift’s sin 2 (qr L ), whereas C lEE is just sin 2 (qr L )

  14. Polarisation from Re-ionisation

  15. Polarisation from Re-ionisation C lEE ~

  16. Cross-correlation between T and E • Velocity potential is Sin(qr L ) , whereas the temperature power spectrum is predominantly Cos(qr L ) • Thus, the TE correlation is Sin(qr L )Cos(qr L ) which can change sign

  17. Bennett et al. (2013) WMAP 9-year Power Spectrum

  18. Planck Collaboration (2016) Planck 29-mo Power Spectrum

  19. South Pole Telescope Collaboration (2018) SPTPol Power Spectrum

  20. TE correlation is useful for understanding physics • T roughly traces gravitational potential, while E traces velocity • With TE, we witness how plasma falls into gravitational potential wells!

  21. Coulson et al. (1994) Example: Gravitational Effects Gravitational Potential, Φ Plasma motion

  22. TE correlation in angular space First, let’s define Stokes parameters in sphere New X-axis: Polar angles θ In this example, they are all Q<0

  23. TE correlation in angular space Put a gravitational potential well at β =0; plasma flows to the centre. What happens?

  24. Komatsu et al. (2011); Planck Collaboration (2016) Average Q polarisation around temperature hot spots Q Planck Data Simulation

  25. Gravitational Waves • GW changes the distances between two points X d ` 2 = d x 2 = � ij dx i dx j ij d ` 2 = X ( � ij + D ij ) dx i dx j ij

  26. Laser Interferometer Mirror Mirror detector No signal

  27. Laser Interferometer Mirror Mirror detector Signal!

  28. Laser Interferometer Mirror Mirror detector Signal!

  29. LIGO detected GW from binary blackholes, with the wavelength of thousands of kilometres But, the primordial GW affecting the CMB has a wavelength of billions of light-years !! How do we find it?

  30. Detecting GW by CMB Isotropic electro-magnetic fields

  31. Detecting GW by CMB GW propagating in isotropic electro-magnetic fields h × h +

  32. Detecting GW by CMB Space is stretched => Wavelength of light is also stretched d l o c h hot o t cold cold h o t hot d l o c

  33. Generation and erasure of tensor quadrupole (viscosity) • Gravitational waves create quadrupole temperature anisotropy [i.e., tensor viscosity of a photon- baryon fluid] gravitationally, without velocity potential • Still, tight-coupling between photons and baryons erases the tensor viscosity exponentially before the last scattering negligible contribution before the last scattering

  34. Propagation of cosmological gravitational waves tensor • Tensor anisotropic stress can do two things: • It can generate gravitational waves • It can damp gravitational waves (neutrino anisotropic stress) But we shall ignore the tensor anisotropic stress for this lecture

  35. <latexit sha1_base64="a4Lh3bqarO5i6yItf0Aivpni1I=">ACFnicbVDLSgNBEJz1GeMr6tHLYBAEMeyKoBchqAePCkYDSQizk04yZmZ2mekVwrL+hBd/xYsHRbyKN/GyeOg0YKGoqb7q4wlsKi7395U9Mzs3PzuYX84tLymphbf3aRonhUOGRjEw1ZBak0FBgRKqsQGmQgk3Ye904N/cgbEi0lfYj6GhWEeLtuAMndQs7J01U3Gb0WOa1o2iPNIWmcaM7o6EFnDWF7pzj2BU1iwU/ZI/BP1LgjEpkjEumoXPeiviQKNXDJra4EfYyNlBgWXkOXriYWY8R7rQM1RzRTYRjp8K6PbTmnRdmRcaRD9edEypS1fRW6TsWwaye9gfifV0uwfdRIhY4TBM1Hi9qJpBjRQUa0JQxwlH1HGDfC3Up5lxnGXQg270IJl/+S673S4FfCi4PiuWTcRw5skm2yA4JyCEpk3NyQSqEkwfyRF7Iq/foPXtv3vuodcobz2yQX/A+vgEVZ9N</latexit> <latexit sha1_base64="a4Lh3bqarO5i6yItf0Aivpni1I=">ACFnicbVDLSgNBEJz1GeMr6tHLYBAEMeyKoBchqAePCkYDSQizk04yZmZ2mekVwrL+hBd/xYsHRbyKN/GyeOg0YKGoqb7q4wlsKi7395U9Mzs3PzuYX84tLymphbf3aRonhUOGRjEw1ZBak0FBgRKqsQGmQgk3Ye904N/cgbEi0lfYj6GhWEeLtuAMndQs7J01U3Gb0WOa1o2iPNIWmcaM7o6EFnDWF7pzj2BU1iwU/ZI/BP1LgjEpkjEumoXPeiviQKNXDJra4EfYyNlBgWXkOXriYWY8R7rQM1RzRTYRjp8K6PbTmnRdmRcaRD9edEypS1fRW6TsWwaye9gfifV0uwfdRIhY4TBM1Hi9qJpBjRQUa0JQxwlH1HGDfC3Up5lxnGXQg270IJl/+S673S4FfCi4PiuWTcRw5skm2yA4JyCEpk3NyQSqEkwfyRF7Iq/foPXtv3vuodcobz2yQX/A+vgEVZ9N</latexit> <latexit sha1_base64="a4Lh3bqarO5i6yItf0Aivpni1I=">ACFnicbVDLSgNBEJz1GeMr6tHLYBAEMeyKoBchqAePCkYDSQizk04yZmZ2mekVwrL+hBd/xYsHRbyKN/GyeOg0YKGoqb7q4wlsKi7395U9Mzs3PzuYX84tLymphbf3aRonhUOGRjEw1ZBak0FBgRKqsQGmQgk3Ye904N/cgbEi0lfYj6GhWEeLtuAMndQs7J01U3Gb0WOa1o2iPNIWmcaM7o6EFnDWF7pzj2BU1iwU/ZI/BP1LgjEpkjEumoXPeiviQKNXDJra4EfYyNlBgWXkOXriYWY8R7rQM1RzRTYRjp8K6PbTmnRdmRcaRD9edEypS1fRW6TsWwaye9gfifV0uwfdRIhY4TBM1Hi9qJpBjRQUa0JQxwlH1HGDfC3Up5lxnGXQg270IJl/+S673S4FfCi4PiuWTcRw5skm2yA4JyCEpk3NyQSqEkwfyRF7Iq/foPXtv3vuodcobz2yQX/A+vgEVZ9N</latexit> <latexit sha1_base64="a4Lh3bqarO5i6yItf0Aivpni1I=">ACFnicbVDLSgNBEJz1GeMr6tHLYBAEMeyKoBchqAePCkYDSQizk04yZmZ2mekVwrL+hBd/xYsHRbyKN/GyeOg0YKGoqb7q4wlsKi7395U9Mzs3PzuYX84tLymphbf3aRonhUOGRjEw1ZBak0FBgRKqsQGmQgk3Ye904N/cgbEi0lfYj6GhWEeLtuAMndQs7J01U3Gb0WOa1o2iPNIWmcaM7o6EFnDWF7pzj2BU1iwU/ZI/BP1LgjEpkjEumoXPeiviQKNXDJra4EfYyNlBgWXkOXriYWY8R7rQM1RzRTYRjp8K6PbTmnRdmRcaRD9edEypS1fRW6TsWwaye9gfifV0uwfdRIhY4TBM1Hi9qJpBjRQUa0JQxwlH1HGDfC3Up5lxnGXQg270IJl/+S673S4FfCi4PiuWTcRw5skm2yA4JyCEpk3NyQSqEkwfyRF7Iq/foPXtv3vuodcobz2yQX/A+vgEVZ9N</latexit> Super-horizon Solution D ij = constant + decaying term • Super-horizon tensor perturbation is conserved! [Remember ζ for the scalar perturbation] • Thus, no ISW temperature anisotropy on super-horizon scales • It does not look like “gravitational waves”, but it will start oscillating and behaving like waves once it enters the horizon

Recommend


More recommend