EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1
Outline 1) Review 2) Speed (continued) 3) Power 4) Circuit performance Lundstrom EE-612 F06 2
CMOS inverter transfer characteristic V DD noise margins S B V DD PMOS --> D OUT V DD /2 V IN V OUT V D NMOS V DD V DD /2 S B V IN --> Lundstrom EE-612 F06 3
importance of gain V out ( ) r ( ) > 1 dV out = A υ = g mn + g mp V DD on || r op dV in V DD 2 must have gain to A υ = 1 have noise margins V in V DD Lundstrom EE-612 F06 4
outline 1) Review 2) Speed (continued) 3) Power 4) Circuit performance Lundstrom EE-612 F06 5
CMOS inverter speed ⎛ ⎞ V DD τ = 1 C TOT V DD 2 I N (on) + C TOT V DD ⎜ ⎟ ⎝ ⎠ 2 2 I P (on) S ( ) τ = R swN + R swP C TOT 2 D V OUT τ = R sw C TOT V IN + D k n > 1 V DD C TOT R swn = k n 2 - I N (on) S Lundstrom EE-612 F06 6
loaded propagation delay V DD C TOT = C out + C L + FO × C in C in C out C wire C in V IN C in C TOT Lundstrom EE-612 F06 7
Miller C C OV “feed forward” C OV - + V D 0 V DD n+ n+ 0 C M = 2 C OV V DD p-Si 0 V c ( t << 0) = − V DD Δ V c = 2 V DD Δ Q c = Δ V c C OV = 2 V DD C OV = C M V DD V c ( t >> 0) = + V DD Lundstrom EE-612 F06 8
on-current determines circuit speed τ = R sw C TOT R sw ~ V DD / I D (ON) V DD S I N ( ) I N on D V OUT V IN + D V DSAT C TOT V DS - S 1) quasi-static assumption 2) simplified I D - V DS Lundstrom EE-612 F06 9
metrics for circuit speed K.K. Ng, et al., “Effective On-Current of MOSFETs for Large-Signal Speed Consideration,” IEDM, Dec., 2001. M.H. Na, et al., “The Effective Drive Current in CMOS Inverters,” IEDM, Dec., 2002. J. Deng and H.S.P. Wong, “Metrics for Performance Benchmarking of Nanoscale Si and Carbon Nanotube FETs Including Device Nonidealities,” IEEE Trans. Electron Dev ., 53 , pp. 1317-1366, 2006. R. Venugopal, et al., “Design of CMOS Transistors to Maximize Circuit FOM Using a Coupled Process and Mixed Mode Simulation Methodology,” IEEE Electron Dev . Lett., 53 , pp. 1317-1366, 2006. Lundstrom EE-612 F06 10
11 Lundstrom EE-612 F06 outline 4) Circuit performance 1) Review 3) Power 2) Speed
12 2 C TOT V DD 2 1 + - C TOT Lundstrom EE-612 F06 power V DD V IN t T V in ( t ) V DD 0
discharge cycle E C (0) = 1 2 + 2 C TOT V DD 1 2 C TOT 2 C TOT V DD V in ( t ) - E C ( T / 2) = 0 dynamic = Δ E 2 T / 2 = C TOT V DD P T V in ( t ) T / 2 V DD dynamic = α f C TOT V DD 2 P 0 t switching activity Lundstrom EE-612 F06 13
discharge through a resistor R - + V C ( t ) = V c (0) e − t / RC TOT = V DD e − t / τ + C TOT R ( t ) = V C V c ( t ) 2 ( t ) R P V in ( t ) - T /2 ∫ R ( t ) dt P AVE = 0 P T / 2 V in ( t ) T /2 2 T / 2 = 2 V DD ∫ e − 2 t / τ dt V DD T R 0 0 = f C TOT V DD 2 t Lundstrom EE-612 F06 14
charging cycle V DD does it take power to put energy in the capacitor? V IN + 1 2 C TOT 2 C TOT V DD - Lundstrom EE-612 F06 15
charging cycle (ii) E C (0) = 0 E C ( T / 2) = 1 2 + 2 C TOT V DD C TOT V c ( t ) V ( t ) - T /2 ∫ E B = i ( t ) dt V DD 0 T /2 ∫ E B = V DD dt = V DD Q V ( t ) i ( t ) T / 2 0 V DD E B = V DD Q = C TOT V DD 2 0 E diss = 1 2 2 C TOT V DD t Lundstrom EE-612 F06 16
charging cycle (iii) dV c i ( t ) = C TOT R - + dt + ( ) R V c ( t ) = V DD − i t C TOT V c ( t ) V ( t ) - di i ( t ) = − RC TOT dt i ( t ) = i (0 + ) e − t / τ = V DD R ( ) e − t / τ V ( t ) T / 2 T /2 ∫ V DD E B = = C TOT V DD 2 V DD i ( t ) dt 0 0 E diss = 1 2 2 C TOT V DD t Lundstrom EE-612 F06 17
adiabatic charging dV V DD R - i ( t ) = C TOT dt = C TOT + T + C TOT V c ( t ) 2 ⎛ ⎞ V ( t ) C TOT V DD - R = i 2 R = ⎜ ⎟ P R ⎝ ⎠ T 2 V DD T 2 = C TOT ∫ E diss = P R dt RT V ( t ) T 2 0 V DD ⎛ ⎞ 0 RC TOT E diss = C TOT V DD t 2 ⎜ ⎟ ⎝ ⎠ T T Lundstrom EE-612 F06 18
outline 1) Review 2) Speed 3) Power 4) Circuit performance 5) CMOS circuit metrics Lundstrom EE-612 F06 19
device impact on circuit performace Question: Given a technology, how does circuit performance depend on transistor design ( W , T OX , V DD , etc.) Taur and Ning assume a 250nm technology and explore this question by Spice simulation (see pp. 264 - 279). Can we understand the major trends simply? Lundstrom EE-612 F06 20
effect of transistor W on delay ( ) R swn + R swp τ = C TOT = R sw C TOT 2 C TOT = C out + C wire + FO × C in R sw = kV DD I D (on) I (on) ~ W C out ~ W C in ~ W R sw ~ 1/ W Lundstrom EE-612 F06 21
loaded vs. unloaded delay ( ) τ = R sw C TOT = R sw C out + FO × C in + C wire i) unloaded: C in and C out dominate, C TOT ~ W --> τ independent of W ii) loaded: C L dominates, C TOT ~ independent of W --> τ ~1/ W Lundstrom EE-612 F06 22
effect of T OX on delay ( ) τ = R sw C TOT = R sw C out + FO × C in + C L i) intrinsic delay ( C L = 0) R sw = kV DD / I D (ON) ~ T OX τ int ~ constant C in ~ 1/ T OX constant C out ii) loaded delay ( C L > 0) τ loaded ↑ T OX ↑ as τ loaded ≈ R sw C L (see Fig. 5.32 of Taur and Ning ) Lundstrom EE-612 F06 23
effect of L on delay ( ) τ = R sw C TOT = R sw C out + FO × C in + C L R sw = kV DD / I D (ON) ( ) ↓ as L ↑ I D ( ON ) = W C OX υ (0) V GS − V T R sw ↑ as L ↑ τ ↑ L ↑ as C in ~ L C out , C L constant (see Fig. 5.31 of Taur and Ning ) Lundstrom EE-612 F06 24
effect of V DD on delay ( ) τ = R sw C TOT = R sw C out + FO × C in + C L R sw = kV DD / I D (ON) ( ) I D ( ON ) = W C OX υ (0) V GS − V T 1 ( ) τ ~ V DD − V T R sw ~ V DD 1 − V T V DD ( ) R sw ~ 1 1 − V T V DD C out = ε Si W D ~ 1 V DD + V bi Lundstrom EE-612 F06 25
delay vs. V DD τ 1 τ ~ 1 − V T V DD V T V DD = 0.2 fixed V T V DD V T I D (off) ~ e − qV T / mk BT (see Fig. 5.33 of Taur and Ning ) Lundstrom EE-612 F06 26
power-delay trade-off circuit speed: ( ) ( ) τ ~ V DD V DD − V T f ~ 1 − V T V DD dynamic (switching) power: ( ) 2 ~ V DD dynamic = α fC TOT V DD 1 − V T V DD 2 P static (leakage) power: static ~ I D (OFF) V DD ~ e − qV T / mk B T V DD P Lundstrom EE-612 F06 27
power-delay trade-off ( ) 1 − V T V DD 2 dynamic ~ V DD P ( ) speed ~ 1 − V T V DD decreasing active power increasing speed LSP V T decreasing leakage power static ~ e − qV T / mk B T V DD P HP V DD (see Fig. 5.34 of Taur and Ning ) Lundstrom EE-612 F06 28
Outline 1) Review 2) Speed 3) Power 4) Circuit performance 5) CMOS circuit metrics Lundstrom EE-612 F06 29
key metrics E S = 1 1) Switching energy: 2 2 CV DD τ S = CV DD 2) Switching delay: I D (ON) D = α f CV DD 2 P 3) Dynamic power: C 2 V DD 3 E S τ = 1 4) Energy-delay product: 2 I D (on) Lundstrom EE-612 F06 30
the energy-delay metric Energy-delay product: C 2 V DD 3 3 E S τ = 1 V DD I D (on) ~ ( ) V DD − V T 2 Minimum energy-delay product: ( ) ∂ τ E = ⇒ = S opt 0 1.5 V V ∂ DD T V DD Lundstrom EE-612 F06 31
device metrics for 65 nm technology node 2 ≈ 21 aJ E S = 1 2 CV DD 1) Switching energy: τ S = CV DD I D (ON) = 0.64 ps 2) Switching delay: D = α f CV DD 2 P 3) Dynamic power: C 2 V DD 3 E S τ = 1 I D (on) = 1.4 × 10 − 29 J-s 4) Energy-delay product: 2 Lundstrom EE-612 F06 32
circuit performance (high-speed logic) Typical power dissipation of a logic chip: 100 W ≈ 20 W Dissipation of logic core: f α = 10 7 × C S × 1 2 2 ( ) × 10 − 1 C S V DD core = N core × 4 × 10 9 P 2 2 C S ≈ 10 fF/node 2 E S ≈ C S V DD = 6,000 aJ Average switching energy: 2 E S τ ≈ 1.5 × 10 − 24 J-s Energy-delay product: Lundstrom EE-612 F06 33
from device to circuit device circuit increase delay: 0.64 ps 250 ps ~ 400 × switching ~300 × 21 aJ 6000 aJ energy: energy- ~ 10 − 29 J-s ~ 10 − 24 J-s ~100,000 × delay: Lundstrom EE-612 F06 34
Outline 1) Review 2) Speed 3) Power 4) Circuit performance 5) CMOS circuit metrics Lundstrom EE-612 F06 35
conclusions / questions 1) Device metrics aren’t enough; the circuit is critical. 2) How close is CMOS to fundamental limits? Lundstrom EE-612 F06 36
Recommend
More recommend