ee 612 lecture 25 cmos circuits part 2
play

EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom - PowerPoint PPT Presentation

EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1 Outline 1) Review 2) Speed (continued) 3) Power


  1. EE-612: Lecture 25: CMOS Circuits: Part 2 Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1

  2. Outline 1) Review 2) Speed (continued) 3) Power 4) Circuit performance Lundstrom EE-612 F06 2

  3. CMOS inverter transfer characteristic V DD noise margins S B V DD PMOS --> D OUT V DD /2 V IN V OUT V D NMOS V DD V DD /2 S B V IN --> Lundstrom EE-612 F06 3

  4. importance of gain V out ( ) r ( ) > 1 dV out = A υ = g mn + g mp V DD on || r op dV in V DD 2 must have gain to A υ = 1 have noise margins V in V DD Lundstrom EE-612 F06 4

  5. outline 1) Review 2) Speed (continued) 3) Power 4) Circuit performance Lundstrom EE-612 F06 5

  6. CMOS inverter speed ⎛ ⎞ V DD τ = 1 C TOT V DD 2 I N (on) + C TOT V DD ⎜ ⎟ ⎝ ⎠ 2 2 I P (on) S ( ) τ = R swN + R swP C TOT 2 D V OUT τ = R sw C TOT V IN + D k n > 1 V DD C TOT R swn = k n 2 - I N (on) S Lundstrom EE-612 F06 6

  7. loaded propagation delay V DD C TOT = C out + C L + FO × C in C in C out C wire C in V IN C in C TOT Lundstrom EE-612 F06 7

  8. Miller C C OV “feed forward” C OV - + V D 0 V DD n+ n+ 0 C M = 2 C OV V DD p-Si 0 V c ( t << 0) = − V DD Δ V c = 2 V DD Δ Q c = Δ V c C OV = 2 V DD C OV = C M V DD V c ( t >> 0) = + V DD Lundstrom EE-612 F06 8

  9. on-current determines circuit speed τ = R sw C TOT R sw ~ V DD / I D (ON) V DD S I N ( ) I N on D V OUT V IN + D V DSAT C TOT V DS - S 1) quasi-static assumption 2) simplified I D - V DS Lundstrom EE-612 F06 9

  10. metrics for circuit speed K.K. Ng, et al., “Effective On-Current of MOSFETs for Large-Signal Speed Consideration,” IEDM, Dec., 2001. M.H. Na, et al., “The Effective Drive Current in CMOS Inverters,” IEDM, Dec., 2002. J. Deng and H.S.P. Wong, “Metrics for Performance Benchmarking of Nanoscale Si and Carbon Nanotube FETs Including Device Nonidealities,” IEEE Trans. Electron Dev ., 53 , pp. 1317-1366, 2006. R. Venugopal, et al., “Design of CMOS Transistors to Maximize Circuit FOM Using a Coupled Process and Mixed Mode Simulation Methodology,” IEEE Electron Dev . Lett., 53 , pp. 1317-1366, 2006. Lundstrom EE-612 F06 10

  11. 11 Lundstrom EE-612 F06 outline 4) Circuit performance 1) Review 3) Power 2) Speed

  12. 12 2 C TOT V DD 2 1 + - C TOT Lundstrom EE-612 F06 power V DD V IN t T V in ( t ) V DD 0

  13. discharge cycle E C (0) = 1 2 + 2 C TOT V DD 1 2 C TOT 2 C TOT V DD V in ( t ) - E C ( T / 2) = 0 dynamic = Δ E 2 T / 2 = C TOT V DD P T V in ( t ) T / 2 V DD dynamic = α f C TOT V DD 2 P 0 t switching activity Lundstrom EE-612 F06 13

  14. discharge through a resistor R - + V C ( t ) = V c (0) e − t / RC TOT = V DD e − t / τ + C TOT R ( t ) = V C V c ( t ) 2 ( t ) R P V in ( t ) - T /2 ∫ R ( t ) dt P AVE = 0 P T / 2 V in ( t ) T /2 2 T / 2 = 2 V DD ∫ e − 2 t / τ dt V DD T R 0 0 = f C TOT V DD 2 t Lundstrom EE-612 F06 14

  15. charging cycle V DD does it take power to put energy in the capacitor? V IN + 1 2 C TOT 2 C TOT V DD - Lundstrom EE-612 F06 15

  16. charging cycle (ii) E C (0) = 0 E C ( T / 2) = 1 2 + 2 C TOT V DD C TOT V c ( t ) V ( t ) - T /2 ∫ E B = i ( t ) dt V DD 0 T /2 ∫ E B = V DD dt = V DD Q V ( t ) i ( t ) T / 2 0 V DD E B = V DD Q = C TOT V DD 2 0 E diss = 1 2 2 C TOT V DD t Lundstrom EE-612 F06 16

  17. charging cycle (iii) dV c i ( t ) = C TOT R - + dt + ( ) R V c ( t ) = V DD − i t C TOT V c ( t ) V ( t ) - di i ( t ) = − RC TOT dt i ( t ) = i (0 + ) e − t / τ = V DD R ( ) e − t / τ V ( t ) T / 2 T /2 ∫ V DD E B = = C TOT V DD 2 V DD i ( t ) dt 0 0 E diss = 1 2 2 C TOT V DD t Lundstrom EE-612 F06 17

  18. adiabatic charging dV V DD R - i ( t ) = C TOT dt = C TOT + T + C TOT V c ( t ) 2 ⎛ ⎞ V ( t ) C TOT V DD - R = i 2 R = ⎜ ⎟ P R ⎝ ⎠ T 2 V DD T 2 = C TOT ∫ E diss = P R dt RT V ( t ) T 2 0 V DD ⎛ ⎞ 0 RC TOT E diss = C TOT V DD t 2 ⎜ ⎟ ⎝ ⎠ T T Lundstrom EE-612 F06 18

  19. outline 1) Review 2) Speed 3) Power 4) Circuit performance 5) CMOS circuit metrics Lundstrom EE-612 F06 19

  20. device impact on circuit performace Question: Given a technology, how does circuit performance depend on transistor design ( W , T OX , V DD , etc.) Taur and Ning assume a 250nm technology and explore this question by Spice simulation (see pp. 264 - 279). Can we understand the major trends simply? Lundstrom EE-612 F06 20

  21. effect of transistor W on delay ( ) R swn + R swp τ = C TOT = R sw C TOT 2 C TOT = C out + C wire + FO × C in R sw = kV DD I D (on) I (on) ~ W C out ~ W C in ~ W R sw ~ 1/ W Lundstrom EE-612 F06 21

  22. loaded vs. unloaded delay ( ) τ = R sw C TOT = R sw C out + FO × C in + C wire i) unloaded: C in and C out dominate, C TOT ~ W --> τ independent of W ii) loaded: C L dominates, C TOT ~ independent of W --> τ ~1/ W Lundstrom EE-612 F06 22

  23. effect of T OX on delay ( ) τ = R sw C TOT = R sw C out + FO × C in + C L i) intrinsic delay ( C L = 0) R sw = kV DD / I D (ON) ~ T OX τ int ~ constant C in ~ 1/ T OX constant C out ii) loaded delay ( C L > 0) τ loaded ↑ T OX ↑ as τ loaded ≈ R sw C L (see Fig. 5.32 of Taur and Ning ) Lundstrom EE-612 F06 23

  24. effect of L on delay ( ) τ = R sw C TOT = R sw C out + FO × C in + C L R sw = kV DD / I D (ON) ( ) ↓ as L ↑ I D ( ON ) = W C OX υ (0) V GS − V T R sw ↑ as L ↑ τ ↑ L ↑ as C in ~ L C out , C L constant (see Fig. 5.31 of Taur and Ning ) Lundstrom EE-612 F06 24

  25. effect of V DD on delay ( ) τ = R sw C TOT = R sw C out + FO × C in + C L R sw = kV DD / I D (ON) ( ) I D ( ON ) = W C OX υ (0) V GS − V T 1 ( ) τ ~ V DD − V T R sw ~ V DD 1 − V T V DD ( ) R sw ~ 1 1 − V T V DD C out = ε Si W D ~ 1 V DD + V bi Lundstrom EE-612 F06 25

  26. delay vs. V DD τ 1 τ ~ 1 − V T V DD V T V DD = 0.2 fixed V T V DD V T I D (off) ~ e − qV T / mk BT (see Fig. 5.33 of Taur and Ning ) Lundstrom EE-612 F06 26

  27. power-delay trade-off circuit speed: ( ) ( ) τ ~ V DD V DD − V T f ~ 1 − V T V DD dynamic (switching) power: ( ) 2 ~ V DD dynamic = α fC TOT V DD 1 − V T V DD 2 P static (leakage) power: static ~ I D (OFF) V DD ~ e − qV T / mk B T V DD P Lundstrom EE-612 F06 27

  28. power-delay trade-off ( ) 1 − V T V DD 2 dynamic ~ V DD P ( ) speed ~ 1 − V T V DD decreasing active power increasing speed LSP V T decreasing leakage power static ~ e − qV T / mk B T V DD P HP V DD (see Fig. 5.34 of Taur and Ning ) Lundstrom EE-612 F06 28

  29. Outline 1) Review 2) Speed 3) Power 4) Circuit performance 5) CMOS circuit metrics Lundstrom EE-612 F06 29

  30. key metrics E S = 1 1) Switching energy: 2 2 CV DD τ S = CV DD 2) Switching delay: I D (ON) D = α f CV DD 2 P 3) Dynamic power: C 2 V DD 3 E S τ = 1 4) Energy-delay product: 2 I D (on) Lundstrom EE-612 F06 30

  31. the energy-delay metric Energy-delay product: C 2 V DD 3 3 E S τ = 1 V DD I D (on) ~ ( ) V DD − V T 2 Minimum energy-delay product: ( ) ∂ τ E = ⇒ = S opt 0 1.5 V V ∂ DD T V DD Lundstrom EE-612 F06 31

  32. device metrics for 65 nm technology node 2 ≈ 21 aJ E S = 1 2 CV DD 1) Switching energy: τ S = CV DD I D (ON) = 0.64 ps 2) Switching delay: D = α f CV DD 2 P 3) Dynamic power: C 2 V DD 3 E S τ = 1 I D (on) = 1.4 × 10 − 29 J-s 4) Energy-delay product: 2 Lundstrom EE-612 F06 32

  33. circuit performance (high-speed logic) Typical power dissipation of a logic chip: 100 W ≈ 20 W Dissipation of logic core: f α = 10 7 × C S × 1 2 2 ( ) × 10 − 1 C S V DD core = N core × 4 × 10 9 P 2 2 C S ≈ 10 fF/node 2 E S ≈ C S V DD = 6,000 aJ Average switching energy: 2 E S τ ≈ 1.5 × 10 − 24 J-s Energy-delay product: Lundstrom EE-612 F06 33

  34. from device to circuit device circuit increase delay: 0.64 ps 250 ps ~ 400 × switching ~300 × 21 aJ 6000 aJ energy: energy- ~ 10 − 29 J-s ~ 10 − 24 J-s ~100,000 × delay: Lundstrom EE-612 F06 34

  35. Outline 1) Review 2) Speed 3) Power 4) Circuit performance 5) CMOS circuit metrics Lundstrom EE-612 F06 35

  36. conclusions / questions 1) Device metrics aren’t enough; the circuit is critical. 2) How close is CMOS to fundamental limits? Lundstrom EE-612 F06 36

Recommend


More recommend