14 332 231 digital logic design
play

14:332:231 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University - PDF document

14:332:231 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 2013 Lecture #5: Combinational Circuit Analysis Combinational Circuit Analysis Combinational circuit : Output depends only on the


  1. 14:332:231 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 2013 Lecture #5: Combinational Circuit Analysis Combinational Circuit Analysis • Combinational circuit : Output depends only on the current input values (called an input combination) – Sequential circuit ’s output depends not only on its current input but also on the past sequence of inputs that have been applied to it. • I.e., a sequential circuit has memory of past events • Combinational circuit analysis : we are given a logic diagram and need to find its formal description (truth table, logic expression) 2 of 13 1

  2. Kinds of Combinational Analysis • Exhaustive (truth table) • Algebraic (expressions) • Simulation / test bench (in the laboratory) 3 of 13 Exhaustive — Truth Table X Given: Y Z F Find truth table by all input combinations:   00001111 00001111 X 11001111 00110011 Y   01000101 11001100 01010101 01010101 Z 01100101 F 11110000 00110011 00100000 10101010 4 of 13 2

  3. Exhaustive — Truth Table 00001111 00001111 X 11001111 00110011 Y   01000101 11001100 01010101 01010101 Z 01100101   F 11110000 00110011 00100000 10101010 Row X Y Z F 0 0 0 0 0 1 0 0 1 1 2 0 1 0 1 3 0 1 1 0 4 1 0 0 0 Find truth table by all input combinations: 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 5 of 13 Algebraic — Signal Expressions X+Y  X (X+Y  )  Z Y F = ((X+Y  )  Z) + (X  Y  Z  ) Y  Z X  X  Y  Z  Z   Use theorems to transform F into another form  E.g., “multiplying out”: F = ((X+Y  )  Z) + (X  Y  Z  ) = (X  Z) + (Y  Z) + (X  Y  Z  ) … 6 of 13 3

  4. Algebraic — Signal Expressions …and obtain a new circuit but the same function: X X+Y  Y F = ((X+Y  )  Z) + (X  Y  Z  ) Y  Z Y  Z X  X  Y  Z  Z  Two-level AND-OR circuit 7 of 13 “Add out” Logic Function “Add out” logic function is OR-AND circuit: F = ((X + Y  )  Z) + (X   Y  Z  )  two-level AND-OR circuit = (X + Y  + X  )  (X + Y  + Y)  (X + Y  + Z  )  (Z + X  )  (Z + Y)  (Z + Z  ) = 1  1  (X + Y  + Z  )  (X  + Z)  (Y + Z)  1 = (X + Y  + Z  )  (X  + Z)  (Y + Z)  two-level OR-AND circuit  Two-level OR-AND circuit: X Y  X+Y  +Z  Z  F = (X+Y  +Z  )  (X  +Z)  (Y+Z) X  +Z X  Y+Z Y Z 8 of 13 4

  5. Another Example G(W, X, Y, Z) = W  X  Y + Y  Z (W  X  Y)  W  X  Y W W X X G G (Y  Z)  Y  Z Y Y Z Z two-level AND-OR two-level NAND-NAND (W  X)  W W  X  Y X Y  G Y  Z Y Z with 2-input gates only 9 of 13 Yet Another Example (1) W (W  X  )  using NAND and NOR gates: X ((W  X  )  Y)  X  Y W  F (W  +X+Y  )  = [ ((W  X  )  Y)  + (W  +X+Y  )  + (W+Z)  ]  Y  (W+Z)  Z 10 of 13 5

  6. [ RECALL from Lecture #4 ] DeMorgan Symbols X  Y (X   Y  )  OR (X  Y)  X   Y  NOR X  Y (X  + Y  )  AND (X  Y)  X  + Y  NAND (X  )  X BUFFER X  X INVERTER 11 of 13 Yet Another Example (1) W (W  X  )  using NAND and NOR gates: X ((W  X  )  Y)  X  Y W  F (W  +X+Y  )  = [ ((W  X  )  Y)  + (W  +X+Y  )  + (W+Z)  ]  Y  (W+Z)  Z W W  +X after substitution of some X ((W  +X)  Y)  X  NAND and NOR gates: Y W  (W  +Y+Y  )  F =((W  +X)  Y)  (W  +X+Y  )  (W+Z) Y  (W+Z)  …same function, according to Z the generalized DeMorgan’s theorem 12 of 13 6

  7. Yet Another Example (2) bubble-to-bubble: different circuit but the same function: W W  +X X (W  +X)  Y X  Y W  W  +X+Y  F Y  =((W  +X)  Y)  (W  +X+Y  )  (W+Z) W+Z Z here, majority are AND and OR gates 13 of 13 7

Recommend


More recommend