step response analysis frequency response relation
play

Step Response Analysis. Frequency Response, Relation Between Model - PowerPoint PPT Presentation

Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 Gustav Nilsson 17 November 2016 Lund University, Department of Automatic Control Content 1. Step Response Analysis 2.


  1. Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 Gustav Nilsson 17 November 2016 Lund University, Department of Automatic Control

  2. Content 1. Step Response Analysis 2. Frequency Response 3. Relation between Model Descriptions 2

  3. Step Response Analysis

  4. Steup Response From the last lecture, we know that if the input u ( t ) is a step, then the output in the Laplace domain is Y ( s ) = G ( s ) U ( s ) = G ( s )1 s It is possible to do an inverse transform of Y ( s ) to get y ( t ), but is it possible to claim things about y ( t ) by only studying Y ( s )? We will study how the poles affects the step response. (The zeros will be discussed later) 4

  5. Initial and Final Value Theorem Let F ( s ) be the Laplace transformation of f ( t ), i.e., F ( s ) = L ( f ( t ))( s ). Given that the limits below exist, it holds that: Initial value theorem lim t → 0 f ( t ) = lim s → + ∞ sF ( s ) Final value theorem lim t → + ∞ f ( t ) = lim s → 0 sF ( s ) For a step response we have that: s → 0 sG ( s )1 t → + ∞ y ( t ) = lim lim s → 0 sY ( s ) = lim s = G (0) 5

  6. First Order System Singularity Chart Step Response 1 1 0 . 5 T = 1 T = 2 T = 5 y ( t ) Im 0 0 . 5 − 0 . 5 − 1 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 0 5 10 15 t Re K G ( s ) = 1 + sT One pole in s = − 1 / T Step response: Y ( s ) = G ( s )1 K � 1 − e − t / T � L − 1 s = − − → y ( t ) = K s (1 + sT ) 6

  7. First Order System Singularity Chart Step Response 1 1 0 . 5 T = 1 T = 2 T = 5 y ( t ) Im 0 0 . 5 − 0 . 5 − 1 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 0 5 10 15 t Re K G ( s ) = 1 + sT Final value: K t → + ∞ y ( t ) = lim lim s → 0 sY ( s ) = lim s (1 + sT ) = K s → 0 6

  8. First Order System Singularity Chart Step Response 1 1 0 . 5 T = 1 T = 2 T = 5 y ( t ) Im 0 0 . 5 − 0 . 5 − 1 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 0 5 10 15 t Re K G ( s ) = 1 + sT T is called the time-constant: y ( T ) = K (1 − e − T / T ) = K (1 − e − 1 ) ≈ 0 . 63 K I.e., T is time it takes for the step response to reach 63% of its final value 6

  9. First Order System Singularity Chart Step Response 1 1 0 . 5 T = 1 T = 2 T = 5 y ( t ) Im 0 0 . 5 − 0 . 5 − 1 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 0 5 10 15 t Re K G ( s ) = 1 + sT Derivative at zero: s 2 K s (1 + sT ) = K t → 0 ˙ lim y ( t ) = s → + ∞ s · sY ( s ) = lim lim T s → + ∞ 6

  10. Second Order System With Real Poles Singularity Chart Step Response 1 1 0 . 5 T = 1 T = 2 y ( t ) Im 0 0 . 5 − 0 . 5 − 1 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 0 5 10 15 t Re K G ( s ) = (1 + sT 1 )(1 + sT 2 ) Poles in s = − 1 / T 1 and s = − 1 / T 2 . Step response:  � � 1 − T 1 e − t / T 1 − T 2 e − t / T 2  K T 1 � = T 2 T 1 − T 2 y ( t ) = � 1 − e − t / T − t T e − t / T �  K T 1 = T 2 = T 7

  11. Second Order System With Real Poles Singularity Chart Step Response 1 1 0 . 5 T = 1 T = 2 y ( t ) Im 0 0 . 5 − 0 . 5 − 1 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 0 5 10 15 t Re K G ( s ) = (1 + sT 1 )(1 + sT 2 ) Final value: sK t → + ∞ = lim lim s → 0 sY ( s ) = lim s (1 + sT 1 )(1 + sT 2 ) = K s → 0 7

  12. Second Order System With Real Poles Singularity Chart Step Response 1 1 0 . 5 T = 1 T = 2 y ( t ) Im 0 0 . 5 − 0 . 5 − 1 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 0 5 10 15 t Re K G ( s ) = (1 + sT 1 )(1 + sT 2 ) Derivative at zero: s 2 K t → 0 ˙ lim y ( t ) = s → + ∞ s · sY ( s ) = lim lim s (1 + sT 1 )(1 + sT 2 ) = 0 s → + ∞ 7

  13. Second Order System With Complex Poles K ω 2 0 G ( s ) = , 0 < ζ < 1 s 2 + 2 ζω 0 s + ω 2 0 Relative damping ζ , related to the angle ϕ ζ = cos( ϕ ) Singularity Chart 1 0 . 5 ω 0 ϕ Im 0 − 0 . 5 − 1 − 1 0 1 Re 8

  14. Second Order System With Complex Poles K ω 2 0 G ( s ) = , 0 < ζ < 1 s 2 + 2 ζω 0 s + ω 2 0 Inverse transformation yields: � �� 1 � � 1 − ζ 2 e − ζω 0 t sin 1 − ζ 2 t + arccos ζ y ( t ) = K 1 − ω 0 � 8

  15. Second Order System With Complex Poles K ω 2 0 G ( s ) = , 0 < ζ < 1 s 2 + 2 ζω 0 s + ω 2 0 Singularity Chart Step Response ω 0 = 1 . 5 1 1 ω 0 = 1 ω 0 = 0 . 5 y ( t ) Im 0 0 . 5 − 1 0 − 1 0 1 0 5 10 15 t Re 8

  16. Second Order System With Complex Poles K ω 2 0 G ( s ) = , 0 < ζ < 1 s 2 + 2 ζω 0 s + ω 2 0 Singularity Chart Step Response 1 . 5 1 ζ = 0 . 3 ζ = 0 . 7 1 ζ = 0 . 9 y ( t ) Im 0 0 . 5 − 1 0 − 1 0 1 0 5 10 15 t Re 8

  17. Frequency Response

  18. Sinusoidial Input Given a transfer function G ( s ), what happens if we let the input be u ( t ) = sin( ω t )? 1 0 . 5 y ( t ) 0 − 0 . 5 − 1 0 5 10 15 20 t 1 0 . 5 u ( t ) 0 − 0 . 5 − 1 0 5 10 15 20 10 t

  19. Sinusoidial Input It can be shown that if the input is u ( t ) = sin( ω t ), the output will be y ( t ) = a sin( ω t + ϕ ) where a = | G ( i ω ) | ϕ = arg G ( i ω ) So if we determine a and ϕ for different frequencies, we have a description of the transfer function. 11

  20. Bode Plot Idea: Plot | G ( i ω ) | and arg G ( i ω ) for different frequencies ω . 10 1 Magnitude (abs) 10 0 10 − 1 10 − 2 10 − 3 10 − 2 10 − 1 10 0 10 1 10 2 0 Phase (deg) − 45 − 90 − 135 − 180 10 − 2 10 − 1 10 0 10 1 10 2 Frequency (rad/s) 12

  21. Bode Plot - Products of Transfer Functions Let G ( s ) = G 1 ( s ) G 2 ( s ) G 3 ( s ) then log | G ( i ω ) | = log | G 1 ( i ω ) | + log | G 2 ( i ω ) | + log | G 3 ( i ω ) | arg G ( i ω ) = arg G 1 ( i ω ) + arg G 2 ( i ω ) + arg G 3 ( i ω ) This means that we can construct Bode plots of transfer functions from simple ”building blocks” for which we know the Bode plots. 13

  22. Bode Plot of G ( s ) = K If G ( s ) = K then log | G ( i ω ) | = log( K ) arg G ( i ω ) = 0 14

  23. Bode Plot of G ( s ) = K 10 1 Magnitude (abs) K = 4 K = 1 10 0 K = 0 . 5 10 − 1 10 − 2 10 − 1 10 0 10 1 10 2 45 0 Phase (deg) − 45 − 90 − 135 − 180 10 − 2 10 − 1 10 0 10 1 10 2 Frequency (rad/s) 14

  24. Bode Plot of G ( s ) = s n If G ( s ) = s n then log | G ( i ω ) | = n log( ω ) arg G ( i ω ) = n π 2 15

  25. Bode Plot of G ( s ) = s n 10 2 Magnitude (abs) n = 1 10 1 10 0 n = − 1 10 − 1 10 − 2 n = − 2 10 − 3 10 − 4 10 − 1 10 0 10 1 10 2 90 45 Phase (deg) 0 − 45 − 90 − 135 − 180 10 − 2 10 − 1 10 0 10 1 10 2 Frequency (rad/s) 15

  26. Bode Plot of G ( s ) = (1 + sT ) n If G ( s ) = (1 + sT ) n then � 1 + ω 2 T 2 ) log | G ( i ω ) | = n log( arg G ( i ω ) = n arg(1 + i ω T ) = n arctan ( ω T ) For small ω log | G ( i ω ) | → 0 arg G ( i ω ) → 0 For large ω log | G ( i ω ) | → n log( ω T ) arg G ( i ω ) → n π 2 16

  27. Bode Plot of G ( s ) = (1 + sT ) n 10 1 Magnitude (abs) n = 1 10 0 n = − 1 10 − 1 1 T n = − 2 10 − 2 10 − 1 10 0 10 1 90 45 Phase (deg) 0 − 45 − 90 − 135 − 180 10 − 1 10 0 10 1 Frequency (rad/s) 16

  28. Bode Plot of G ( s ) = (1 + 2 ζ s /ω 0 + ( s /ω 0 ) 2 ) n G ( s ) = (1 + 2 ζ s /ω 0 + ( s /ω 0 ) 2 ) n For small ω log | G ( i ω ) | → 0 arg( i ω ) → 0 For large ω � ω � log | G ( i ω ) | → 2 n log ω 0 arg G ( i ω ) → n π 17

  29. Bode Plot of G ( s ) = (1 + 2 ζ s /ω 0 + ( s /ω 0 ) 2 ) n 10 2 Magnitude (abs) ζ = 0 . 2 10 1 ζ = 0 . 1 ζ = 0 . 05 10 0 10 − 1 10 − 2 10 − 1 10 0 10 1 0 Phase (deg) − 45 − 90 − 135 − 180 10 − 1 10 0 10 1 Frequency (rad/s) 17

  30. Bode Plot of G ( s ) = e − sL G ( s ) = e − sL Describes a pure time delay with delay L , i.e, y ( t ) = u ( t − L ) log | G ( i ω ) | = 0 arg G ( i ω ) = − ω L 18

  31. Bode Plot of G ( s ) = e − sL 10 1 Magnitude (abs) 10 0 10 − 1 10 − 1 10 0 10 1 10 2 0 L = 0 . 1 Phase (deg) − 200 L = 5 L = 0 . 5 − 400 − 600 10 − 1 10 0 10 1 10 2 Frequency (rad/s) 18

  32. Bode Plot of Composite Transfer Function Example Draw the Bode plot of the transfer function G ( s ) = 100( s + 2) s ( s + 20) 2 First step, write it as product of sample transfer functions: G ( s ) = 100( s + 2) s ( s + 20) 2 = 0 . 5 · s − 1 · (1 + 0 . 5 s ) · (1 + 0 . 05 s ) − 2 Then determine the corner frequencies: w c 2 =20 w c 1 =2 � �� � G ( s ) = 100( s + 2) � �� � s ( s + 20) 2 = 0 . 5 · s − 1 · (1 + 0 . 05 s ) − 2 (1 + 0 . 5 s ) · 19

  33. Bode Plot of Composite Transfer Function w c 2 =20 w c 1 =2 � �� � G ( s ) = 100( s + 2) � �� � s ( s + 20) 2 = 0 . 5 · s − 1 · (1 + 0 . 05 s ) − 2 (1 + 0 . 5 s ) · 10 1 10 0 Magnitude (abs) 10 − 1 10 − 2 10 − 3 10 − 4 10 − 1 10 0 10 1 10 2 10 3 Frequency (rad/s) 20

  34. Bode Plot of Composite Transfer Function w c 2 =20 w c 1 =2 � �� � G ( s ) = 100( s + 2) � �� � s ( s + 20) 2 = 0 . 5 · s − 1 · (1 + 0 . 05 s ) − 2 (1 + 0 . 5 s ) · 10 1 − 1 10 0 Magnitude (abs) 10 − 1 10 − 2 10 − 3 10 − 4 10 − 1 10 0 10 1 10 2 10 3 Frequency (rad/s) 20

  35. Bode Plot of Composite Transfer Function w c 2 =20 w c 1 =2 � �� � G ( s ) = 100( s + 2) � �� � s ( s + 20) 2 = 0 . 5 · s − 1 · (1 + 0 . 05 s ) − 2 (1 + 0 . 5 s ) · 10 1 − 1 10 0 0 Magnitude (abs) 10 − 1 10 − 2 10 − 3 10 − 4 10 − 1 10 0 10 1 10 2 10 3 Frequency (rad/s) 20

Recommend


More recommend