progress on parameter synthesis for markov models
play

Progress on Parameter Synthesis for Markov Models Joost-Pieter - PowerPoint PPT Presentation

Progress on Parameter Synthesis for Markov Models Joost-Pieter Katoen Joint with: Christian Dehnert, Nils Jansen, Sebastian Junges, Tim Quatman, Erika brahm, Harold Bruintjes, Florian Corzilius, Ufuk Topcu, Murat Cubutceke, Ivan Papusha,


  1. Hierarchical SCC Decomposition [Jansen et al. , 2014] S S 1 0 . 8 0 . 2 2 3 0 . 4 q 1 1 1 − q 4 5 1 0 . 2 0 . 2 0 . 2 0 . 4 0 . 5 6 7 9 1 p 0 . 3 1 − p 0 . 8 8 S 2 . 1 S 2 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  2. Hierarchical SCC Decomposition [Jansen et al. , 2014] 0 . 8 0 . 2 2 3 0 . 4 q 1 1 1 − q 4 5 1 0 . 2 0 . 2 0 . 2 0 . 4 0 . 5 6 7 9 1 p 0 . 3 1 − p 0 . 8 8 S 2 . 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  3. Hierarchical SCC Decomposition [Jansen et al. , 2014] 0 . 8 0 . 2 2 3 0 . 4 q 1 1 1 − q 4 5 1 0 . 2 0 . 2 0 . 2 p 0 . 4 0 . 3 p 0 . 5 p 1 − p S 2 . 1 6 9 1 0 . 8 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  4. Hierarchical SCC Decomposition [Jansen et al. , 2014] 0 . 8 0 . 2 2 3 0 . 4 q 1 1 1 − q 4 5 1 0 . 2 0 . 2 0 . 2 p 1 − 0 . 3 p 0 . 5 p 0 . 4 1 − 0 . 3 p 1 − p 1 − 0 . 3 p S 2 . 1 6 9 1 0 . 8 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  5. Hierarchical SCC Decomposition [Jansen et al. , 2014] 0 . 8 0 . 2 2 3 0 . 4 q 1 1 1 − q 4 5 1 0 . 2 0 . 2 0 . 2 p 1 − 0 . 3 p 0 . 5 p 0 . 4 1 − 0 . 3 p 1 − p 1 − 0 . 3 p S 2 . 1 6 9 1 S 2 0 . 8 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  6. Hierarchical SCC Decomposition [Jansen et al. , 2014] 0 . 8 0 . 2 2 3 0 . 4 q 1 0 . 2 − 0 . 06 p 1 1 − q 1 − 0 . 7 p 4 5 1 0 . 2 0 . 16 p 1 − 0 . 7 p 0 . 4 0 . 8 − 0 . 8 p 1 − 0 . 7 p S 2 9 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  7. Hierarchical SCC Decomposition [Jansen et al. , 2014] S 1 0 . 8 0 . 2 2 3 0 . 4 q 1 0 . 2 − 0 . 06 p 1 1 − q 1 − 0 . 7 p 4 5 1 0 . 2 0 . 16 p 1 − 0 . 7 p 0 . 4 0 . 8 − 0 . 8 p 1 − 0 . 7 p S 2 9 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  8. Hierarchical SCC Decomposition [Jansen et al. , 2014] 0 . 8 − 0 . 8 q 1 − 0 . 8 q 0 . 2 S 12 S 13 1 − q 1 − 0 . 8 q 0 . 4 0 . 2 1 − 0 . 8 q 0 . 2 − 0 . 06 p 1 1 − 0 . 7 p 5 1 0 . 2 q 1 − 0 . 8 q 0 . 16 p 1 − 0 . 7 p 0 . 4 0 . 8 − 0 . 8 p 1 − 0 . 7 p S 2 9 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  9. Hierarchical SCC Decomposition [Jansen et al. , 2014] S 0 . 8 − 0 . 8 q 1 − 0 . 8 q 0 . 2 S 12 S 13 1 − q 1 − 0 . 8 q 0 . 4 0 . 2 1 − 0 . 8 q 0 . 2 − 0 . 06 p 1 1 − 0 . 7 p 5 1 0 . 2 q 1 − 0 . 8 q 0 . 16 p 1 − 0 . 7 p 0 . 4 0 . 8 − 0 . 8 p 1 − 0 . 7 p S 2 9 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  10. Hierarchical SCC Decomposition [Jansen et al. , 2014] − 0 . 2872 p − 0 . 52 q + 0 . 3192 pq + 0 . 52 − 0 . 6712 p − 0 . 744 q + 0 . 5432 pq + 0 . 904 S 5 1 − 0 . 384 p − 0 . 224 q + 0 . 224 pq + 0 . 384 − 0 . 6712 p − 0 . 744 q + 0 . 5432 pq + 0 . 904 9 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  11. Hierarchical SCC Decomposition [Jansen et al. , 2014] − 0 . 2872 p − 0 . 52 q + 0 . 3192 pq + 0 . 52 − 0 . 6712 p − 0 . 744 q + 0 . 5432 pq + 0 . 904 S 5 1 − 0 . 384 p − 0 . 224 q + 0 . 224 pq + 0 . 384 − 0 . 6712 p − 0 . 744 q + 0 . 5432 pq + 0 . 904 9 1 For which (combinations of) values for p and q is the probability of reaching5smaller than c ∈ [ 0 , 1 ] ? ⇒ Evaluate rational function. Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 23/51

  12. Exploiting SMT Goal: partition parameter space in regions R that are either safe or unsafe Idea: generate region candidates R and ask SMT solver 2 for counterexample 2 Over non-linear real arithmetic using Z3 or SMT-RAT . Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 24/51

  13. Exploiting SMT Goal: partition parameter space in regions R that are either safe or unsafe Idea: generate region candidates R and ask SMT solver 2 for counterexample 2 Over non-linear real arithmetic using Z3 or SMT-RAT . Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 24/51

  14. CEGAR-Like Parameter Synthesis Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 25/51

  15. CEGAR-Like Parameter Synthesis For which 1 / 10 ⩽ p ⩽ 9 / 10 and 2 / 5 ⩽ q ⩽ 3 / 5 does Pr (◇ 2 ) ⩾ 3 / 20 hold? Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 26/51

  16. CEGAR-Like Parameter Synthesis For which 1 / 10 ⩽ p ⩽ 9 / 10 and 2 / 5 ⩽ q ⩽ 3 / 5 does Pr (◇ 2 ) ⩾ 3 / 20 hold? Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 26/51

  17. CEGAR-Like Parameter Synthesis For which 1 / 10 ⩽ p ⩽ 9 / 10 and 2 / 5 ⩽ q ⩽ 3 / 5 does Pr (◇ 2 ) ⩾ 3 / 20 hold? Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 26/51

  18. CEGAR-Like Parameter Synthesis For which 1 / 10 ⩽ p ⩽ 9 / 10 and 2 / 5 ⩽ q ⩽ 3 / 5 does Pr (◇ 2 ) ⩾ 3 / 20 hold? Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 26/51

  19. Experimental Results [Dehnert et al. , 2015] competitors ▸ PARAM [Hahn et al., 2010] ▸ PRISM [Parker et al., 2011] models ▸ Bounded retransmission protocol ▸ NAND multiplexing ▸ Zeroconf, Crowds protocol ▸ 10 4 to 7 . 5 ⋅ 10 6 states experiments: ▸ best set-up for each tool ▸ log-scale x - and y -axis runner-up in the CAV 2015 artefact evaluation Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 27/51

  20. Experimental Results [Dehnert et al. , 2015] competitors ▸ PARAM [Hahn et al., 2010] ▸ PRISM [Parker et al., 2011] ▸ prototype [Baier et al., 2014] models ▸ Bounded retransmission protocol ▸ NAND multiplexing ▸ Zeroconf, Crowds protocol ▸ 10 4 to 7 . 5 ⋅ 10 6 states experiments: ▸ best set-up for each tool ▸ log-scale x - and y -axis runner-up in the CAV 2015 artefact evaluation Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 27/51

  21. Parameter Synthesis using SMT Pros: ▸ Exact results: rational function is an exact symbolic object ▸ Drastic improvements over existing tools PARAM and PRISM ▸ User-friendly representation Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 28/51

  22. Parameter Synthesis using SMT Pros: ▸ Exact results: rational function is an exact symbolic object ▸ Drastic improvements over existing tools PARAM and PRISM ▸ User-friendly representation Cons: > 4 parameters? ▸ Rational function requires many gcd-computations ▸ SMT performance unpredictable heuristics hard Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 28/51

  23. Parameter Synthesis using SMT Pros: ▸ Exact results: rational function is an exact symbolic object ▸ Drastic improvements over existing tools PARAM and PRISM ▸ User-friendly representation Cons: > 4 parameters? ▸ Rational function requires many gcd-computations ▸ SMT performance unpredictable heuristics hard Can we do better by sacrificing exactness? Yes. Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 28/51

  24. Approximate Parameter Synthesis [Quatmann et al, , 2016] Let transition probabilities be linear in each variable. That is, transition functions f are multi-affine multivariate polynomials of form: f = ∑ a i ⋅ (∏ x ) with a i ∈ Q x ∈ V Examples: 3 x ⋅ y + 4 y ⋅ z , 1 − x , x ⋅ y ⋅ z etc. Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 29/51

  25. Approximate Parameter Synthesis [Quatmann et al, , 2016] Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 29/51

  26. Approximate Parameter Synthesis [Quatmann et al, , 2016] Two-phase approach: first remove dependencies, then substitute extremal values Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 29/51

  27. Approximate Parameter Synthesis [Quatmann et al, , 2016] Two-phase approach: first remove dependencies, then substitute extremal values Also applicable to parametric MDPs. Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 29/51

  28. Phase 1: Relaxation Parameter dependencies are removed; Pr (◇ 2 ) = ( 1 − z ) ⋅ 1 − q 1 − p ⋅ q ⇒ each state is equipped with its own parameter Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 30/51

  29. Phase 1: Relaxation Correctness: ▸ Relaxed regions contain more valuations than original regions ⇒ Relaxation yields over-approximations ⇒ Relaxation preserves upper-bounds on reachability probs Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 31/51

  30. Phase 1: Relaxation Correctness: ▸ Relaxed regions contain more valuations than original regions ⇒ Relaxation yields over-approximations ⇒ Relaxation preserves upper-bounds on reachability probs Complexity of parameter synthesis : ▸ Relaxation increases the number of parameters ▸ Extremal values of the state parameters attain maximal probabilities ⇒ Valuations for maximal probabilities are easier to find Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 31/51

  31. Phase 2: Substitution Local parameters per state ⇒ extremal values at states suffice Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 32/51

  32. Phase 2: Substitution Local parameters per state ⇒ extremal values at states suffice Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 33/51

  33. Phase 2: Substitution This results in a Markov decision process. Its extremal reachability probabilities provide bounds for parametric MC. Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 34/51

  34. Parameter Synthesis Until ≈ 95% of the parameter space is covered Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 35/51

  35. Parameter Synthesis Until 95% of the parameter space is covered Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 36/51

  36. Coverage # states # trans % p safe unsafe neither unkn ϕ n t brp E 2 20 744 27 651 48% 51 14.9% 79.2% 5.8% 0.2% 4 20 744 27 651 48% 71 7.5% 51.0% 40.6% 0.8% pMC E crowds 2 104 512 246 082 19% 44 54.4% 41.1% 4.2% 0.3% P nand P 2 35 112 52 647 47% 21 21.4% 68.5% 6.9% 3.2% brp 2 40 721 55 143 50% 153 6.6% 90.4% 3.0% 0.0% P pMDP cons P 4 22 656 75 232 41% 357 2.6% 87.0% 10.4% 0.0% sav P 4 379 1 127 50% 2 44.0% 15.4% 35.4% 5.3% zconf P 2 88 858 203 550 40% 186 16.6% 77.3% 5.6% 0.5% Parameter space R = [ 10 − 5 , 1 − 10 − 5 ] n until 95% coverage for n parameters for 625 equally-sized regions without region refinement single core, 2.0 GHz, 30GB RAM, TO = one hour Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 37/51

  37. Parametric Markov Chain Benchmarks PLA PRISM benchmark instance ϕ #pars #states #trans #regions direct bisim best (256,5) P 2 19 720 26 627 37 6 14 TO (4096,5) P 2 315 400 425 987 13 233 TO TO (256,5) E 2 20 744 27 651 195 8 15 TO (4096,5) E 2 331 784 442 371 195 502 417 TO brp (16,5) E 4 1 304 1 731 1 251 220 2 764 1 597 TO (32,5) E 4 2 600 3 459 1 031 893 TO 2 722 TO (256,5) E 4 20 744 27 651 – TO TO TO (10,5) P 2 104 512 246 082 123 17 6 2038 crowds (15,7) 2 8 364 409 25 108 729 116 1 880 518 TO P (20,7) P 2 45 421 597 164 432 797 119 TO 2 935 TO (10,5) 2 35 112 52 647 469 22 30 TO P nand (25,5) P 2 865 592 1 347 047 360 735 2 061 TO coverage of 95%; refinement into four equally-sized regions SMT approach needs > one hour on all instances. Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 38/51

  38. Parametric MDP Benchmarks PLA PRISM benchmark instance ϕ #pars #states #trans #regions direct bisim best (256,5) 2 40 721 55 143 37 35 3 359 TO P brp (4096,5) P 2 647 441 876 903 13 3 424 TO TO < 1 < 1 (2,2) 2 272 492 119 31 P (2,32) P 2 4 112 7 692 108 113 141 TO consensus (4,2) 4 22 656 75 232 6 125 1 866 2 022 TO P (4,4) P 4 43 136 144 352 – TO TO TO < 1 < 1 (6,2,2) 2 379 1 127 162 TO P (100,10,10) P 2 1 307 395 6 474 535 37 1 612 TO TO sav (6,2,2) 4 379 1 127 621 175 944 917 TO P (10,3,3) P 4 1 850 6 561 TO TO TO (2) P 2 88 858 203 550 186 86 1 295 TO zeroconf (5) P 2 494 930 1 133 781 403 2 400 TO TO coverage of 95% Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 39/51

  39. Summary So Far SMT-based approach: ▸ Exact ▸ Requires rational functions ▸ Fickle SMT performance ▸ ≈ 10 6 states, 2 parameters ▸ Restricted to Markov chains ▸ CEGAR-like refinement Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 40/51

  40. Summary So Far SMT-based approach: Parameter lifting approach: ▸ Exact ▸ Approximative ▸ Requires rational functions ▸ Off-the-shelf model checking ▸ Fickle SMT performance ▸ No SMT, no rational functions ▸ ≈ 10 6 states, 2 parameters ▸ ≈ 10 7 states, 4–5 parameters ▸ Restricted to Markov chains ▸ Applicable to MDPs and games ▸ CEGAR-like refinement ▸ CEGAR-like refinement Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 40/51

  41. Multiple Objectives Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 41/51

  42. Multiple Objectives Inputs: 1. a (finite) parametric MDP M over V = { x 1 ,... , x n } with signomial parameter functions c ⋅ x a 1 1 ⋅ ... ⋅ x a n n for c ∈ R 2. multiple objectives ϕ 1 ,... ,ϕ m (reachability, expected reward) N c k ⋅ x a 1 k ⋅ ... ⋅ x a nk for c k ∈ R ∑ 3. objective function f over V : n 1 k = 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 41/51

  43. Multiple Objectives Inputs: 1. a (finite) parametric MDP M over V = { x 1 ,... , x n } with signomial parameter functions c ⋅ x a 1 1 ⋅ ... ⋅ x a n n for c ∈ R 2. multiple objectives ϕ 1 ,... ,ϕ m (reachability, expected reward) N c k ⋅ x a 1 k ⋅ ... ⋅ x a nk for c k ∈ R ∑ 3. objective function f over V : n 1 k = 1 Output: A (randomised) policy σ and valuation u such that: M σ [ u ] ⊧ ϕ 1 ∧ ... ∧ ϕ m and the objective f is minimised �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� “optimality” “feasibility” Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 41/51

  44. Multiple Objectives Inputs: 1. a (finite) parametric MDP M over V = { x 1 ,... , x n } with signomial parameter functions c ⋅ x a 1 1 ⋅ ... ⋅ x a n n for c ∈ R 2. multiple objectives ϕ 1 ,... ,ϕ m (reachability, expected reward) N c k ⋅ x a 1 k ⋅ ... ⋅ x a nk for c k ∈ R ∑ 3. objective function f over V : n 1 k = 1 Output: A (randomised) policy σ and valuation u such that: M σ [ u ] ⊧ ϕ 1 ∧ ... ∧ ϕ m and the objective f is minimised �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� “optimality” “feasibility” multi-objective MDP: use LP [Etessami et al. , 2008] multi-objective parametric MDP: use special type NLP [Cubuktepe et al. , 2017] Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 41/51

  45. NLP for Two Objectives Objectives: minimise f , reach T with probability ⩽ p , expected cost to reach G ⩽ c Subject to: p s I ⩽ p reachability objective c s I ⩽ c expected reward objective Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 42/51

  46. NLP for Two Objectives Objectives: minimise f , reach T with probability ⩽ p , expected cost to reach G ⩽ c Subject to: p s I ⩽ p reachability objective c s I ⩽ c expected reward objective σ s ,α = 1 ∀ s ∶ ∑ randomised scheduler 0 ⩽ σ s ,α ⩽ 1 α ∈ Act ( s ) ∀ s ,α ∶ Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 42/51

  47. NLP for Two Objectives Objectives: minimise f , reach T with probability ⩽ p , expected cost to reach G ⩽ c Subject to: p s I ⩽ p reachability objective c s I ⩽ c expected reward objective σ s ,α = 1 ∀ s ∶ ∑ randomised scheduler 0 ⩽ σ s ,α ⩽ 1 α ∈ Act ( s ) ∀ s ,α ∶ ∀ s ,α ∶ P( s ,α, t ) = 1 ∑ probabilistic choice ∀ s , t ,α ∶ 0 ⩽ P( s ,α, t ) ⩽ 1 t ∈ S Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 42/51

  48. NLP for Two Objectives Objectives: minimise f , reach T with probability ⩽ p , expected cost to reach G ⩽ c Subject to: p s I ⩽ p reachability objective c s I ⩽ c expected reward objective σ s ,α = 1 ∀ s ∶ ∑ randomised scheduler 0 ⩽ σ s ,α ⩽ 1 α ∈ Act ( s ) ∀ s ,α ∶ ∀ s ,α ∶ P( s ,α, t ) = 1 ∑ probabilistic choice ∀ s , t ,α ∶ 0 ⩽ P( s ,α, t ) ⩽ 1 t ∈ S ∀ s ∈ T ∶ p s = 1 reach prob of T σ s ,α ⋅ ∑ ∀ s / ∈ T ∶ p s = P( s ,α, t )⋅ p t ∑ transition probabilities α ∈ Act ( s ) t ∈ S Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 42/51

  49. NLP for Two Objectives Objectives: minimise f , reach T with probability ⩽ p , expected cost to reach G ⩽ c Subject to: p s I ⩽ p reachability objective c s I ⩽ c expected reward objective σ s ,α = 1 ∀ s ∶ ∑ randomised scheduler 0 ⩽ σ s ,α ⩽ 1 α ∈ Act ( s ) ∀ s ,α ∶ ∀ s ,α ∶ P( s ,α, t ) = 1 ∑ probabilistic choice ∀ s , t ,α ∶ 0 ⩽ P( s ,α, t ) ⩽ 1 t ∈ S ∀ s ∈ T ∶ p s = 1 reach prob of T σ s ,α ⋅ ∑ ∀ s / ∈ T ∶ p s = P( s ,α, t )⋅ p t ∑ transition probabilities α ∈ Act ( s ) t ∈ S ∀ s ∈ G ∶ c s = 0 expected cost of G σ s ,α ⋅ ( c ( s ,α ) + ∑ ∀ s / ∈ G ∶ c s = P( s ,α, t )⋅ c t ) ∑ expected costs α ∈ Act ( s ) t ∈ S Theorem: This NLP is sound and complete. But solving NLPs is exponential. Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 42/51

  50. Can We Do Better? Yes. 1. Get a feasible solution in polynomial time 3 . How? Geometric programming. 2. Get local optimum. How? Sequential convex programming. Solutions are approximations that can be arbitrarily close. 3 Approximation of arbitrarily precise results by interior point methods with barriers Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 43/51

  51. Geometric Programming N Objective: minimise f ∶∶ c k ⋅ x a 1 k ⋅ ... ⋅ x a nk for c k ∈ R ⩾ 0 ∑ n 1 k = 1 Subject to: ∀ i ∈ [ 1 .. m ] ∶ g i ⩽ 1 posynomial g i ∀ j ∈ [ 1 ..ℓ ] ∶ h j = 1 monomial h j Division transformation: f ⩽ h if and only if f h ⩽ 1 Relaxation: f = h implies f ⩽ h if and only if f h ⩽ 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 44/51

  52. Convexification Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 45/51

  53. Lifting Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 46/51

  54. GP for Two Objectives Objectives: reach T with probability ⩽ p , expected cost to reach G ⩽ c ⩽ 1 Subject to: p sI reachability p ⩽ 1 c sI expected reward c Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 47/51

  55. GP for Two Objectives Objectives: reach T with probability ⩽ p , expected cost to reach G ⩽ c ⩽ 1 Subject to: p sI reachability p ⩽ 1 c sI expected reward σ s ,α ⩽ 1 c ∀ s ∶ ∑ randomised scheduler σ s ,α ⩽ 1 α ∈ Act ( s ) ∀ s ,α ∶ Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 47/51

  56. GP for Two Objectives Objectives: reach T with probability ⩽ p , expected cost to reach G ⩽ c ⩽ 1 Subject to: p sI reachability p ⩽ 1 c sI expected reward σ s ,α ⩽ 1 c ∀ s ∶ ∑ randomised scheduler σ s ,α ⩽ 1 α ∈ Act ( s ) ∀ s ,α ∶ ∀ s ,α ∶ P( s ,α, t ) ⩽ 1 ∑ probabilistic choice t ∈ S ∀ s , t ,α ∶ P( s ,α, t ) ⩽ 1 Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 47/51

  57. GP for Two Objectives Objectives: reach T with probability ⩽ p , expected cost to reach G ⩽ c ⩽ 1 Subject to: p sI reachability p ⩽ 1 c sI expected reward σ s ,α ⩽ 1 c ∀ s ∶ ∑ randomised scheduler σ s ,α ⩽ 1 α ∈ Act ( s ) ∀ s ,α ∶ ∀ s ,α ∶ P( s ,α, t ) ⩽ 1 ∑ probabilistic choice t ∈ S ∀ s , t ,α ∶ P( s ,α, t ) ⩽ 1 ∀ s ∈ T ∶ p s = 1 reach prob of T ∑ α σ s ,α ⋅ ∑ t ∈ S P( s ,α, t )⋅ p t ∀ s / ∈ T ∶ ⩽ 1 transition probabilities p s Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 47/51

  58. GP for Two Objectives Objectives: reach T with probability ⩽ p , expected cost to reach G ⩽ c ⩽ 1 Subject to: p sI reachability p ⩽ 1 c sI expected reward σ s ,α ⩽ 1 c ∀ s ∶ ∑ randomised scheduler σ s ,α ⩽ 1 α ∈ Act ( s ) ∀ s ,α ∶ ∀ s ,α ∶ P( s ,α, t ) ⩽ 1 ∑ probabilistic choice t ∈ S ∀ s , t ,α ∶ P( s ,α, t ) ⩽ 1 ∀ s ∈ T ∶ p s = 1 reach prob of T ∑ α σ s ,α ⋅ ∑ t ∈ S P( s ,α, t )⋅ p t ∀ s / ∈ T ∶ ⩽ 1 transition probabilities p s ∑ α σ s ,α ⋅ ( c ( s ,α ) + ∑ t ∈ S P( s ,α, t )⋅ c t ) ∀ s / ∈ G ∶ ⩽ 1 expected costs c s Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 47/51

  59. Correctness Use the objective function F now 4 p + ∑ p + ∑ ∑ 1 1 1 Minimise σ s ,α s ,α p ∈ V p ∈ L yields that all variables p , p and σ s ,α are maximised. Theorem: The GP with objective function F yields a feasible solution. Solving this GP can be done in polynomial time. 4 Note: the original objective function f is dropped. Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 48/51

  60. Experimental Results Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 49/51

  61. Experimental Results Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 50/51

  62. Epilogue SMT-based approach: ▸ Exact ▸ Requires rational functions ▸ Fickle SMT performance ▸ ≈ 10 6 states, 2 parameters ▸ Restricted to Markov chains ▸ CEGAR-like refinement Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 51/51

  63. Epilogue SMT-based approach: Parameter lifting approach: ▸ Exact ▸ Approximative ▸ Requires rational functions ▸ Off-the-shelf model checking ▸ Fickle SMT performance ▸ No SMT, no rational functions ▸ ≈ 10 6 states, 2 parameters ▸ ≈ 10 7 states, 4–5 parameters ▸ Restricted to Markov chains ▸ Applicable to MDPs and games ▸ CEGAR-like refinement ▸ CEGAR-like refinement Joost-Pieter Katoen Progress on Parameter Synthesis for Markov Models 51/51

Recommend


More recommend