particle markov chain monte carlo methods in marine
play

Particle Markov Chain Monte Carlo Methods in Marine Biogeochemistry - PowerPoint PPT Presentation

Particle Markov Chain Monte Carlo Methods in Marine Biogeochemistry Lawrence Murray and Emlyn Jones CSIRO Mathematics, Informatics and Statistics Outline Case studies in marine biogeochemistry and generic challenges. Conventional


  1. Particle Markov Chain Monte Carlo Methods in Marine Biogeochemistry Lawrence Murray and Emlyn Jones CSIRO Mathematics, Informatics and Statistics

  2. Outline • Case studies in marine biogeochemistry and generic challenges. • Conventional state-space models • Collapsed state-space models (to deal with the absence of a closed-form transition density) • The particle marginal Metropolis-Hastings (PMMH) sampler in this context. • Results and implications. Acknowledgements: Eddy Campbell (CSIRO), John Parslow (CSIRO), Nugzar Margvelashvili (CSIRO), Noel Cressie (Ohio State University). Lawrence Murray PMCMC in marine biogeochemistry : 2 of 41

  3. Marine biogeochemical model Sea Surface P Z Zooplankton Grazing (Phytoplankton) (Zooplankton) Phytoplankton Zooplankton Mortality Growth Messy Feeding N D Remineralisation (DIN) (Detritus) Base of Mixed Layer Mixing Sinking Lawrence Murray PMCMC in marine biogeochemistry : 3 of 41

  4. Issues, issues, issues... • These models tend to have long memory and don’t mix well. • Available observations may be sparse. • The model may be strongly nonlinear, ... • ...it might even be chaotic. • The transition density is unlikely to have a closed form. Lawrence Murray PMCMC in marine biogeochemistry : 4 of 41

  5. Conventional state-space model ... U 1 U 2 U T ... X 0 X 1 X 2 X T ... Y 1 Y 2 Y T Lawrence Murray PMCMC in marine biogeochemistry : 5 of 41

  6. Conventional state-space model Sampling with sequential Monte Carlo (auxiliary particle filter)... For particle i at time t , extend x i t − 1 by drawing x i t ∼ q ( x t ) and weight with: t = p ( y t | x i t ) p ( x i t | x i t − 1 ) w i w i t − 1 . q ( x i t ) Lawrence Murray PMCMC in marine biogeochemistry : 6 of 41

  7. Conventional state-space model Sampling with sequential Monte Carlo (auxiliary particle filter)... For particle i at time t , extend x i t − 1 by drawing x i t ∼ q ( x t ) and weight with: t = p ( y t | x i t ) p ( x i t | x i t − 1 ) w i w i t − 1 . q ( x i t ) We don’t have that! Lawrence Murray PMCMC in marine biogeochemistry : 7 of 41

  8. Conventional state-space model ... U 1 U 2 U T ... X 0 X 1 X 2 X T ... Y 1 Y 2 Y T Lawrence Murray PMCMC in marine biogeochemistry : 8 of 41

  9. Collapsed state-space model ... U 1 U 2 U T X 0 ... Y 1 Y 2 Y T Lawrence Murray PMCMC in marine biogeochemistry : 9 of 41

  10. Collapsed state-space model Sampling with sequential Monte Carlo (auxiliary particle filter)... For particle i at time t , extend u i 1: t − 1 by drawing u i t ∼ q ( u t ) and weight with: t = p ( y t | u i 1: t , x i 0 ) p ( u i t | u i 1: t − 1 , x i 0 ) w i w i t − 1 . q ( u i t ) Lawrence Murray PMCMC in marine biogeochemistry : 10 of 41

  11. Collapsed state-space model Sampling with sequential Monte Carlo (auxiliary particle filter)... For particle i at time t , extend u i 1: t − 1 by drawing u i t ∼ q ( u t ) and weight with: t = p ( y t | u i 1: t , x i 0 ) p ( u i t ) w i w i t − 1 . q ( u i t ) We do have that! Lawrence Murray PMCMC in marine biogeochemistry : 11 of 41

  12. What should q ( · ) be? • PF0: bootstrap • PF1: as PF0 plus one-step single-pilot lookahead and resample. • MUPF0: UKF run offline, use time marginals p N ( u t | y 1: t ) as proposals. • MUPF1: as MUPF0 plus one-step single-pilot lookahead and resample. • CUPF0: UKF conditioned on each particle, so use p N ( u t | u 1: t − 1 , y 1: t ) . • CUPF1: as CUPF0 plus UKF lookahead and resample. (UKF = Unscented Kalman Filter) Lawrence Murray PMCMC in marine biogeochemistry : 12 of 41

  13. Particle marginal Metropolis-Hastings The target (posterior) density is π ( u 1: T , x 0 , θ | y 1: T ) , factorised as either: π 1 ( u 1: T , x 0 | θ , y 1: T ) π 2 ( θ | y 1: T ) or π 1 ( u 1: T | x 0 , θ , y 1: T ) π 2 ( x 0 , θ | y 1: T ) . In either case π 1 is targeted with an auxiliary particle filter, π 2 with Metropolis-Hastings [Andrieu et al., 2010, Pitt et al., 2011]. The second factorisation should be preferred when prior information over x 0 is scarce, so that importance sampling of it will be degenerate. Lawrence Murray PMCMC in marine biogeochemistry : 13 of 41

  14. PZ model Simple phytoplankton-zooplankton model [Jones et al., 2010]. Lotka-Volterra with stochastic growth rate and quadratic mortality term. dP = α t P − cPZ dt dZ = ecPZ − m l Z − m q Z 2 dt α t ∼ N ( µ, σ ) . P is observed with noise. Simulated data used here. Lawrence Murray PMCMC in marine biogeochemistry : 14 of 41

  15. PZ model: state estimate 7 Prior 2.5 Posterior Observed 2 6 Truth 1.5 Z 5 1 0.5 4 0 20 40 60 80 100 P 3 2 1 2 0 α 1 -1 -2 0 0 20 40 60 80 100 0 20 40 60 80 100 t t Lawrence Murray PMCMC in marine biogeochemistry : 15 of 41

  16. NPZD model The model features nine noise terms, ξ i for i = 1 , . . . , 9 , each coupled to a univariate autoregressive process B i . B i ( t + ∆ t ) = B i ( t ) · (1 − ∆ t/τ P ) + ( µ i + PDF · σ i ξ i ) · ∆ t/τ P , where ∆ t is a discrete time step (one day), µ i a parameter to be estimated, PDF a common diversity factor to be estimated, σ i a prescribed scaling factor, and τ P a common characteristic time scale, also prescribed. Lawrence Murray PMCMC in marine biogeochemistry : 16 of 41

  17. NPZD model A multiplicative temperature correction Tc is applied to all rate processes, for which a Q 10 formulation for dependence on temperature, T , is used: Tc = Q ( T − T ref ) / 10 , 10 where T ref is a reference temperature, and Q 10 a prescribed constant. Lawrence Murray PMCMC in marine biogeochemistry : 17 of 41

  18. NPZD model The zooplankton grazing rate ( gr ) is dependent on the phytoplankton concentration (zooplankton functional response): gr = Tc · I Z · A υ (1 + A υ ) , (1) where υ is a given power. Lawrence Murray PMCMC in marine biogeochemistry : 18 of 41

  19. NPZD model The relative availability of phytoplankton, A , is A = Cl Z · P ; I Z I Z is the maximum zooplankton ingestion rate (mg P per mg Z per day); Cl Z is the maximum clearance rate (volume in m 3 swept clear per mg Z per day). For υ = 1 , this takes the form of a Type-2 functional response (standard rectangular hyperbola) [Holling, 1966], and for υ > 1 a Type-3 sigmoid functional response. Lawrence Murray PMCMC in marine biogeochemistry : 19 of 41

  20. NPZD model A quadratic formulation for zooplankton mortality is adopted after Steele [1976] and Steele and Henderson [1992]: m = Tc · m Q · Z, where the quadratic mortality rate m Q has units of d − 1 ( mg Z m − 3 ) − 1 . Lawrence Murray PMCMC in marine biogeochemistry : 20 of 41

  21. NPZD model The detrital remineralization rate is dependent only on temperature: r = Tc · r D , where r D prescribes the remineralisation rate at a reference temperature. Lawrence Murray PMCMC in marine biogeochemistry : 21 of 41

  22. NPZD model The phytoplankton specific growth rate, g , depends on temperature, T , available light or irradiance, E , and dissolved inorganic nutrient, N : g = Tc · g max · h E · h N / ( h E + h N ) . Lawrence Murray PMCMC in marine biogeochemistry : 22 of 41

  23. NPZD model The light-limitation factor is given by h E = 1 − exp( − α · λ max · E/g max ) , where α is the initial slope of the photosynthesis versus irradiance curve (mg C mg Chla − 1 mol photon − 1 m 2 ), and λ max is the maximum Chla : C ratio (mg Chla mg C − 1 ). Lawrence Murray PMCMC in marine biogeochemistry : 23 of 41

  24. NPZD model E is the mean photosynthetic available radiation (PAR) in the mixed layer and is given by E = E 0 . (1 − exp( − Kz )) /Kz, where E 0 is the mean daily photosynthetically available radiation (PAR) just below the air-sea interface and Kz is given by Kz = ( K W + a Ch · Chla ) · MLD. (2) K W is attenuation due to the seawater and a Ch . Lawrence Murray PMCMC in marine biogeochemistry : 24 of 41

  25. NPZD model The nutrient-limitation factor is given by N h N = ( g max · Tc/a N ) + N , where a N is the maximum specific affinity for nitrogen uptake (d − 1 mg N − 1 m 3 ). Lawrence Murray PMCMC in marine biogeochemistry : 25 of 41

  26. NPZD model The phytoplankton N : C ratio, χ , predicted by the model is given by χ = χ min · h E + χ max · h N , h E + h N where χ min and χ max are the prescribed minimum and maximum N : C ratios (mg N mg C − 1 ). Lawrence Murray PMCMC in marine biogeochemistry : 26 of 41

  27. NPZD model The equations governing interactions between the remaining state variables { P, Z, D, N } are: dP κ = g · P − gr · Z + MLD · ( BCP − P ) dt dZ = E Z · gr · Z − m · Z dt dD D = (1 − E Z ) · f D · gr · Z + m · Z − r · D − S D · MLD + dt κ MLD · ( BCD − D ) dN = − g · P + (1 − E Z ) · (1 − f D ) · gr · Z + r · D + dt κ MLD · ( BCN − N ) . Lawrence Murray PMCMC in marine biogeochemistry : 27 of 41

  28. State estimation (observed) 350 300 DIN ( µ g N l −1 ) 250 200 150 100 50 0 1971 1972 1973 1974 1975 4 ln(Chla ( µ g Chla l −1 )) 2 0 −2 −4 −6 −8 1971 1972 1973 1974 1975 Prior−95% Posterior−95% Observations Prior−median Posterior−median Lawrence Murray PMCMC in marine biogeochemistry : 28 of 41

Recommend


More recommend