monte carlo approximation of monte carlo filters
play

Monte Carlo Approximation of Monte Carlo Filters Adam M. Johansen - PowerPoint PPT Presentation

Monte Carlo Approximation of Monte Carlo Filters Adam M. Johansen et al. Collaborators Include: Arnaud Doucet, Axel Finke, Anthony Lee, Nick Whiteley 7th January 2014 Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating


  1. Monte Carlo Approximation of Monte Carlo Filters Adam M. Johansen et al. Collaborators Include: Arnaud Doucet, Axel Finke, Anthony Lee, Nick Whiteley 7th January 2014 Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  2. Context & Outline Filtering in State-Space Models: ◮ SIR Particle Filters [GSS93] ◮ Rao-Blackwellized Particle Filters [AD02, CL00] ◮ Block-Sampling Particle Filters [DBS06] Exact Approximation of Monte Carlo Algorithms: ◮ Particle MCMC [ADH10] ◮ SMC 2 [CJP13] Approximating the RBPF ◮ Approximated Rao-Blackwellized Particle Filters [CSOL11] ◮ Exactly-approximated RBPFs [JWD12] Approximating the BSPF ◮ Local SMC [JD14] Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  3. Particle MCMC ◮ MCMC algorithms which employ SMC proposals [ADH10] ◮ SMC algorithm as a collection of RVs ◮ Values ◮ Weights ◮ Ancestral Lines ◮ Construct MCMC algorithms: ◮ With many auxiliary variables ◮ Exactly invariant for distribution on extended space ◮ Standard MCMC arguments justify strategy ◮ SMC 2 employs the same approach within an SMC setting. ◮ What else does this allow us to do with SMC? Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  4. Ancestral Trees t=1 t=2 t=3 a 1 a 4 a 1 a 4 3 =1 3 =3 2 =1 2 =3 b 2 b 4 b 6 3 , 1:3 =(1 , 1 , 2) 3 , 1:3 =(3 , 3 , 4) 3 , 1:3 =(4 , 5 , 6) Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  5. SMC Distributions We’ll need the SMC Distribution : � � ψ M a n − L +2: n , x n − L +1: n , k ; x n − L n,L � M � � �� � � � n � M � a i � x n − L ) q ( x i x i r ( a p | w p − 1 ) p | x p r ( k | w n ) = q n − L +1 p − 1 i =1 p = n − L +2 i =1 and the conditional SMC Distribution : � � � � � � � �� ψ M a ⊖ k x ⊖ k b k x k � n − L +2: n , � n − L +1: n ; x n − L � n − L +1: n − 1 , k, � n − L +1: n n,L ψ M n,L ( � a n − L +2: n , � x n − L +1: n , k ; x n − L ) � � �� = � � � � � n � � � b k b k b n � n,n − L +1 n,p n,p − 1 q x � n − L +1 | x n − L r b k n,p | � q x � | � x r ( k | � w n ) w p − 1 p p − 1 p = n − L +2 Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  6. A (Rather Broad) Class of Hidden Markov Models y 1 x 1 z 1 x 2 z 2 y 2 x 3 z 3 y 3 ◮ Unobserved Markov chain { ( X n , Z n ) } transition f . ◮ Observed process { Y n } conditional density g . ◮ Density: � n p ( x 1: n , z 1: n , y 1: n ) = f 1 ( x 1 , z 1 ) g ( y 1 | x 1 , z 1 ) f ( x i , z i | x i − 1 , z i − 1 ) g ( y i | x i , z i ) . i =2 Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  7. Formal Solutions ◮ Filtering and Prediction Recursions: p ( x n , z n | y 1: n − 1 ) g ( y n | x n , z n ) � p ( x n , z n | y 1: n ) = p ( x ′ n , z ′ n | y 1: n − 1 ) g ( y n | x ′ n , z ′ n ) d ( x ′ n , z ′ n ) � p ( x n +1 , z n +1 | y 1: n ) = p ( x n , z n | y 1: n ) f ( x n +1 , z n +1 | x n , z n ) d ( x n , z n ) ◮ Smoothing: p (( x, z ) 1: n | y 1: n ) ∝ p (( x, z ) 1: n − 1 | y 1: n − 1 ) f (( x, z ) n | ( x, z ) n − 1 ) g ( y n | ( x, z ) n ) Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  8. A Simple SIR Filter Algorithmically, at iteration n : ◮ Given { W i n − 1 , ( X, Z ) i 1: n − 1 } for i = 1 , . . . , N : N , ( � X, � ◮ Resample , obtaining { 1 Z ) i 1: n − 1 } . ◮ Sample ( X, Z ) i n ∼ q n ( ·| ( � X, � Z ) i n − 1 ) n | ( � X, � f (( X,Z ) i Z ) i n − 1 ) g ( y n | ( X,Z ) i n ) ◮ Weight W i n ∝ n | ( � X, � Z ) i q n (( X,Z ) i n − 1 ) Actually: ◮ Resample efficiently. ◮ Only resample when necessary. ◮ . . . Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  9. A Rao-Blackwellized SIR Filter Algorithmically, at iteration n : ◮ Given { W X,i n − 1 , ( X i 1: n − 1 , p ( z 1: n − 1 | X i 1: n − 1 , y 1: n − 1 ) } ◮ Resample , obtaining { 1 N , ( � 1: n − 1 , p ( z 1: n − 1 | � X i X i 1: n − 1 , y 1: n − 1 )) } . ◮ For i = 1 , . . . , N : n ∼ q n ( ·| � ◮ Sample X i X i n − 1 ) 1: n ← ( � ◮ Set X i X i 1: n − 1 , X i n ) . p ( X i n ,y n | � X i n − 1 ) ◮ Weight W X,i ∝ n n | � q n ( X i X i n − 1 ) ◮ Compute p ( z 1: n | y 1: n , X i 1: n ) . Requires analytically tractable substructure. Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  10. An Approximate Rao-Blackwellized SIR Filter Algorithmically, at iteration n : ◮ Given { W X,i n − 1 , ( X i p ( z 1: n − 1 | X i 1: n − 1 , � 1: n − 1 , y 1: n − 1 ) } ◮ Resample , obtaining { 1 N , ( � p ( z 1: n − 1 | � X i X i 1: n − 1 , y 1: n − 1 )) } . 1: n − 1 , � ◮ For i = 1 , . . . , N : n ∼ q n ( ·| � ◮ Sample X i X i n − 1 ) 1: n ← ( � ◮ Set X i X i 1: n − 1 , X i n ) . p ( X i n ,y n | � X i � n − 1 ) ◮ Weight W X,i ∝ n n | � q n ( X i X i n − 1 ) ◮ Compute � p ( z 1: n | y 1: n , X i 1: n ) . Is approximate; how does error accumulate? Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  11. Exactly Approximated Rao-Blackwellized SIR Filter At time n = 1 1 ∼ q x ( ·| y 1 ) . ◮ Sample, X i ∼ q z � � ◮ Sample, Z i,j ·| X i 1 , y 1 . 1 ◮ Compute and normalise the local weights � � 1 , Z i,j w z X i � � 1 , y 1 , Z i,j := p ( X i 1 ) 1 1 1 , Z i,j � , W z,i,j w z X i � � � � := � M 1 1 1 � Z i,j 1 , Z i,k � X i k =1 w z X i q z 1 , y 1 1 1 1 � � M � 1 , y 1 ) := 1 1 , Z i,j p ( X i w z X i define � . 1 1 M j =1 ◮ Compute and normalise the top-level weights � � � � p ( X i w x X i := � 1 , y 1 ) � , W x,i 1 1 w x X i q x � := � � . � N 1 1 1 X i 1 | y 1 k =1 w x X k 1 1 At times n ≥ 2 , resample and do essentially the same again. . . Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  12. Toy Example: Model We use a simulated sequence of 100 observations from the model defined by the densities: �� x 1 � � 0 � � 1 �� 0 µ ( x 1 , z 1 ) = N ; z 1 0 0 1 �� x n � x n − 1 � 1 � � �� 0 f ( x n , z n | x n − 1 , z n − 1 ) = N ; , z n z n − 1 0 1 � � x n � � σ 2 �� 0 x g ( y n | x n , z n ) = N y n ; , σ 2 z n 0 z Consider IMSE (relative to optimal filter) of filtering estimate of first coordinate marginals. Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  13. Approximation of the RBPF N = 10 Mean Squared Filtering Error −1 10 N = 20 N = 40 N = 80 −2 10 N = 160 0 1 2 10 10 10 Number of Lower−Level Particles, M For σ 2 x = σ 2 z = 1 . Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  14. Computational Performance 0 10 N = 10 N = 20 N = 40 Mean Squared Filtering Error N = 80 −1 10 N = 160 −2 10 −3 10 1 2 3 4 5 10 10 10 10 10 Computational Cost, N(M+1) For σ 2 x = σ 2 z = 1 . Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  15. Computational Performance N = 10 1.9 10 N = 20 N = 40 Mean Squared Filtering Error N = 80 N = 160 1.8 10 1.7 10 1.6 10 1 2 3 4 5 10 10 10 10 10 Computational Cost, N(M+1) x = 10 2 and σ 2 For σ 2 z = 0 . 1 2 . Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

  16. What About Other HMMs / Algorithms? Returning to: x 1 x 2 x 3 x 4 x 5 x 6 y 1 y 2 y 3 y 4 y 5 y 6 ◮ Unobserved Markov chain { X n } transition f . ◮ Observed process { Y n } conditional density g . ◮ Density: n � p ( x 1: n , y 1: n ) = f 1 ( x 1 ) g ( y 1 | x 1 ) f ( x i | x i − 1 ) g ( y i | x i ) . i =2 Introduction Monte Carlo Approximationof Monte Carlo Filters Approximating the RBPF Adam M. Johansen , Block Sampling Particle Filters References

Recommend


More recommend