math 20 probability
play

MATH 20: PROBABILITY Sums of Independent Random Variables - PowerPoint PPT Presentation

MATH 20: PROBABILITY Sums of Independent Random Variables Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020 Syllabus Su Sums of Random Va Variables La Law of o La Large N Numbers Ce Central Limit Theorem Ge Generating


  1. MATH 20: PROBABILITY Sums of Independent Random Variables Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020

  2. Syllabus Su Sums of Random Va Variables La Law of o La Large N Numbers Ce Central Limit Theorem Ge Generating Functions Marko kov Chains Quiz Quiz Homework (due Fri 28) Quiz Final Mon 17 Tue 18 Wed 19 Thu 20 Fri 21 Sat 22 Sun 23 Mon 24 Tue 25 Wed 26 โ€ฆ Sun 30 XC 2020

  3. Example from previous lectures Two real numbers ๐‘Œ and ๐‘ are chosen at random and uniformly from [0, 1] . Let ๐‘Ž = ๐‘Œ + ๐‘ . Please derive expressions for the cumulative distribution and the density function of ๐‘Ž . ๐บ ! ๐‘จ = ๐‘„ ๐‘Ž โ‰ค ๐‘จ = โ‹ฏ 01 range of ๐‘Ž is โ€ฆ ๐‘’ ๐‘’๐‘จ ๐บ ! ๐‘จ = ๐‘” ๐‘จ = โ‹ฏ 02 XC 2020

  4. Sum of independent random variables discrete & continuous $# ๐‘› % ๐‘˜ = ; ๐‘› ' (๐‘™)๐‘› ( (๐‘˜ โˆ’ ๐‘™) (๐‘” โˆ— ๐‘•) ๐‘จ = 6 ๐‘” ๐‘จ โˆ’ ๐‘ง ๐‘• ๐‘ง ๐‘’๐‘ง "# & co conv nvolu lution XC 2020

  5. Sum of discrete random variables ra random vari riable le X 01 01 distribution function ๐‘› ' (๐‘ฆ) ra random vari riable le ๐’‚ = ๐’€ + ๐’ independent in distribu bution on funct ction on ๐’ ๐Ÿ’ (๐’œ) random vari ra riable le Y 02 02 distribution function ๐‘› ( (๐‘ง) XC 2020

  6. ๐‘Ž = ๐‘Œ + ๐‘ the probability that ๐‘Ž takes on the value ๐‘จ ๐’œ โˆ’ ๐Ÿ ๐Ÿ ๐‘จ = 1 + (๐‘จ โˆ’ 1) ๐’œ โˆ’ ๐Ÿ‘ ๐Ÿ‘ ๐‘จ = 2 + (๐‘จ โˆ’ 2) ๐’œ โˆ’ ๐Ÿ’ ๐Ÿ’ ๐‘จ = 3 + (๐‘จ โˆ’ 3) XC 2020

  7. ๐‘Ž = ๐‘Œ + ๐‘ the probability that ๐‘Ž takes on the value ๐‘จ ๐’œ โˆ’ ๐Ÿ ๐Ÿ ๐‘จ = 1 + (๐‘จ โˆ’ 1) ๐‘„ ๐‘Ž = ๐‘จ $# = ; ๐‘„ ๐‘Œ = ๐‘™ ๐‘„(๐‘ = ๐‘จ โˆ’ ๐‘™) ๐’œ โˆ’ ๐Ÿ‘ ๐Ÿ‘ &*"# ๐‘จ = 2 + (๐‘จ โˆ’ 2) ๐’œ โˆ’ ๐Ÿ’ ๐Ÿ’ ๐‘จ = 3 + (๐‘จ โˆ’ 3) XC 2020

  8. Sum of discrete random variables ยง Let ๐‘Œ and ๐‘ be two in independent integer-valued random variables, with distribution functions ๐‘› ! (๐‘ฆ) and ๐‘› " (๐‘ฆ) respectively. ยง Then the co convo volut ution of ๐‘› ! (๐‘ฆ) and ๐‘› " (๐‘ฆ) is the distribution function ๐‘› # = ๐‘› ! โˆ— ๐‘› " given by ๐‘› # ๐‘˜ = โˆ‘ $ ๐‘› ! (๐‘™)๐‘› " (๐‘˜ โˆ’ ๐‘™) , for ๐‘˜ = โ‹ฏ , โˆ’2, โˆ’1, 0, 1, 2, โ‹ฏ . ยง The function ๐‘› # ๐‘ฆ is the distribution function of the random variable ๐‘Ž = ๐‘Œ + ๐‘ . XC 2020

  9. Example ยง A die is rolled twice. Let ๐‘Œ ' and ๐‘Œ ( be the outcomes, and let ๐‘‡ ( = ๐‘Œ ' + ๐‘Œ ( be the sum of these outcomes. ยง Then ๐‘Œ ' and ๐‘Œ ( have the common distribution function: ' ( % + , - . ๐‘› = ! ! ! ! ! ! " " " " " " ยง The distribution function of ๐‘‡ ( is then the convolution of this distribution with itself. XC 2020

  10. ๐‘‡ I = ๐‘Œ J + ๐‘Œ I ๐Ÿ‘ โˆ’ ๐’ ๐’ ๐‘„ ๐‘‡ ( = 2 = ๐‘› 1 ๐‘›(1) ๐Ÿ’ โˆ’ ๐’ ๐’ ๐‘„ ๐‘‡ ( = 3 = ๐‘› 1 ๐‘› 2 + ๐‘› 2 ๐‘›(1) ๐Ÿ“ โˆ’ ๐’ ๐’ ๐‘„ ๐‘‡ ( = 4 = โ‹ฏ XC 2020

  11. Example ๐‘‡ ! ๐‘„(๐‘‡ ! ) ๐‘‡ ( = ๐‘Œ ' + ๐‘Œ ( 1 2 and 12 36 2 3 and 11 36 3 4 and 10 36 ๐‘‡ I = 2,3, โ‹ฏ , 12 4 5 and 9 36 5 6 and 8 36 6 7 36 XC 2020

  12. Sum of ๐‘œ discrete random variables ๐‘ป ๐Ÿ ๐‘ป ๐Ÿ‘ ๐‘ป ๐Ÿ’ โ‹ฏ ๐‘ป ๐’ iables varia random ๐‘ป ๐’ ๐‘Œ ' + ๐‘Œ ( + โ‹ฏ + ๐‘Œ . independent in ๐’€ ๐Ÿ ๐‘ป ๐Ÿ + ๐’€ ๐Ÿ‘ ๐‘ป ๐Ÿ‘ + ๐’€ ๐Ÿ’ โ‹ฏ ๐‘ป ๐’"๐Ÿ + ๐’€ ๐’ XC 2020

  13. ๐‘‡ O = ๐‘Œ J + ๐‘Œ I + ๐‘Œ O = ๐‘‡ I + ๐‘Œ O ๐‘„ ๐‘‡ " = 3 = ๐‘„ ๐‘‡ ! = 2 ๐‘„(๐‘Œ " = 1) ๐‘„ ๐‘‡ " = 4 = ๐‘„ ๐‘‡ ! = 2 ๐‘„ ๐‘Œ " = 2 + ๐‘„ ๐‘‡ ! = 3 ๐‘„(๐‘Œ " = 1) ๐‘„ ๐‘‡ " = 5 = โ‹ฏ XC 2020

  14. Bell-shaped curve ๐‘œ โ†’ โˆž ๐‘„(๐‘‡ . ) โ†’ โ‹ฏ Ce Central Limit Theorem XC 2020

  15. The convolution of two binomial distributions Ra Random vari riable le ๐’€ 01 01 binomial distribution parameters: ๐‘› and ๐‘ž Ra Random vari riable le ๐’‚ Ra Random vari riable le ๐’ binomial distribution parameters: 02 02 ๐‘œ and ๐‘ž XC 2020

  16. The convolution of two binomial distributions Ra Random vari riable le ๐’€ 01 01 binomial distribution parameters: ๐‘› and ๐‘ž Ra Rando dom variable le ๐’‚ binomial distribution parameters: ๐‘› + ๐‘œ and ๐‘ž Ra Random vari riable le ๐’ binomial distribution parameters: 02 02 ๐‘œ and ๐‘ž XC 2020

  17. The convolution of ๐‘™ geometric distributions ๐‘ป ๐Ÿ ๐‘ป ๐Ÿ‘ ๐‘ป ๐Ÿ’ โ‹ฏ ๐‘ป ๐’ ๐’’ er eter paramet ๐‘ป ๐’ pa ๐‘Œ ' + ๐‘Œ ( + โ‹ฏ + ๐‘Œ & common co ๐’€ ๐Ÿ ๐‘ป ๐Ÿ + ๐’€ ๐Ÿ‘ ๐‘ป ๐Ÿ‘ + ๐’€ ๐Ÿ’ โ‹ฏ ๐‘ป ๐’"๐Ÿ + ๐’€ ๐’ XC 2020

  18. ๐‘ป ๐Ÿ ๐‘ป ๐Ÿ‘ ๐‘ป ๐Ÿ’ โ‹ฏ ๐‘ป ๐’ ๐’’ eter er paramet ๐‘ป ๐’ pa ๐‘Œ ' + ๐‘Œ ( + โ‹ฏ + ๐‘Œ & common co ๐’€ ๐Ÿ ๐‘ป ๐Ÿ + ๐’€ ๐Ÿ‘ ๐‘ป ๐Ÿ‘ + ๐’€ ๐Ÿ’ โ‹ฏ ๐‘ป ๐’"๐Ÿ + ๐’€ ๐’ ๐‘Œ 3 : the number of trials up to and including the the fi rst succe ccess ๐‘‡ 4 : โ‹ฏ XC 2020

  19. ๐‘ป ๐Ÿ ๐‘ป ๐Ÿ‘ ๐‘ป ๐Ÿ’ โ‹ฏ ๐‘ป ๐’ ๐’’ eter er paramet ๐‘ป ๐’ pa ๐‘Œ ' + ๐‘Œ ( + โ‹ฏ + ๐‘Œ & common negative binomial co distribution parameters: ๐‘™ and ๐‘ž ๐’€ ๐Ÿ ๐‘ป ๐Ÿ + ๐’€ ๐Ÿ‘ ๐‘ป ๐Ÿ‘ + ๐’€ ๐Ÿ’ โ‹ฏ ๐‘ป ๐’"๐Ÿ + ๐’€ ๐’ ๐‘Œ 3 : the number of trials up to and including the the fi rst succe ccess ๐‘‡ 4 : the number of trails up to and include the ๐‘™ th successes XC 2020

  20. Sum of continuous random variables ra random vari riable le X 01 01 density function ๐‘”(๐‘ฆ) ra random vari riable le ๐’‚ = ๐’€ + ๐’ independent in density funct ction on ๐’Š(๐’œ) ra random vari riable le Y 02 02 density function ๐‘•(๐‘ง) XC 2020

  21. ๐‘Ž = ๐‘Œ + ๐‘ the probability that ๐‘Ž takes on the value ๐‘จ ๐‘จ = 1 + (๐‘จ โˆ’ 1) discrete ๐‘จ = 2 + (๐‘จ โˆ’ 2) di ๐‘จ = 3 + (๐‘จ โˆ’ 3) XC 2020

  22. ๐‘Ž = ๐‘Œ + ๐‘ the probability that ๐‘Ž takes on the value ๐‘จ ๐‘จ = ๐‘ + (๐‘จ โˆ’ ๐‘) continuous ๐‘จ = ๐‘ + (๐‘จ โˆ’ ๐‘) co ๐‘จ = ๐‘‘ + (๐‘จ โˆ’ ๐‘‘) XC 2020

  23. Convolution ยง Let ๐‘Œ and ๐‘ be two continuous random variables with density functions ๐‘”(๐‘ฆ) and ๐‘•(๐‘ง) , respectively. ยง Assume that both ๐‘”(๐‘ฆ) and ๐‘•(๐‘ง) are de fi ned for all real numbers. ยง Then the con on ๐‘” โˆ— ๐‘• of ๐‘” and ๐‘• is the function given by convol olution $# ๐‘” ๐‘จ โˆ’ ๐‘ง ๐‘• ๐‘ง ๐‘’๐‘ง . (๐‘” โˆ— ๐‘•) ๐‘จ = โˆซ "# ๐‘จ = ๐‘ฆ + ๐‘ง XC 2020

  24. Sum of continuous random variables ยง Let ๐‘Œ and ๐‘ be two in independent random variables with density functions ๐‘” 5 (๐‘ฆ) and ๐‘” defined for all ๐‘ฆ . 6 ๐‘ง ยง The the sum ๐‘Ž = ๐‘Œ + ๐‘ is a random variable with density function ! (๐‘จ) , where ๐‘” ! is the convolution of ๐‘” 5 and ๐‘” 6 . ๐‘” $# ๐‘” 6 ๐‘ง ๐‘’๐‘ง . ๐‘” ! ๐‘จ = (๐‘” 5 โˆ— ๐‘” 6 ) ๐‘จ = โˆซ 5 ๐‘จ โˆ’ ๐‘ง ๐‘” "# ๐‘จ = ๐‘ฆ + ๐‘ง XC 2020

  25. Example 1: uniform Suppose we choose independently two ยง numbers at random from the interval [0, 1] with uniform probability density. What is the density of their sum? ยง Un Unifor orm distribu bution on 6 ๐‘ฆ = Y1, 0 โ‰ค ๐‘ฆ โ‰ค 1 ๐‘” 5 ๐‘ฆ = ๐‘” 0. otherwise $# ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘” 6 ๐‘ง ๐‘’๐‘ง "# XC 2020

  26. Example 1: uniform Unifor Un orm distribu bution on 6 ๐‘ฆ = Y1, 0 โ‰ค ๐‘ฆ โ‰ค 1 ๐‘” 5 ๐‘ฆ = ๐‘” 0. otherwise $# ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘” 6 ๐‘ง ๐‘’๐‘ง "# ' ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘’๐‘ง 7 XC 2020

  27. Example 1: uniform Unifor Un orm distribu bution on ๐Ÿ โ‰ค ๐’œ โ‰ค ๐Ÿ 8 6 ๐‘ฆ = Y1, 0 โ‰ค ๐‘ฆ โ‰ค 1 ๐‘” ! ๐‘จ = 6 ๐‘’๐‘ง = ๐‘จ ๐‘” 5 ๐‘ฆ = ๐‘” 0. otherwise 7 $# ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘” 6 ๐‘ง ๐‘’๐‘ง "# ' ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘’๐‘ง ๐Ÿ โ‰ค ๐’œ โ‰ค ๐Ÿ‘ 7 ' ๐‘” ! ๐‘จ = 6 ๐‘’๐‘ง = 2 โˆ’ ๐‘จ 8"' 0 โ‰ค ๐‘จ โˆ’ ๐‘ง โ‰ค 1 , ๐‘จ โˆ’ 1 โ‰ค ๐‘ง โ‰ค ๐‘จ XC 2020

  28. Example 1: uniform Unifor Un orm distribu bution on 6 ๐‘ฆ = Y1, 0 โ‰ค ๐‘ฆ โ‰ค 1 ๐‘” 5 ๐‘ฆ = ๐‘” 0. otherwise $# ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘” 6 ๐‘ง ๐‘’๐‘ง "# ' ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘’๐‘ง 7 ๐‘จ, 0 โ‰ค ๐‘จ โ‰ค 1 ๐‘” ! ๐‘จ = d 2 โˆ’ ๐‘จ, 1 โ‰ค ๐‘จ โ‰ค 2 0. otherwise XC 2020

  29. Example 2: exponential Suppose we choose two numbers at ยง random from the interval 0, โˆž with an exponential density with parameter ๐œ‡ . What is the density of their sum? ยง Ex Exponen ential al di distribution 6 ๐‘ฆ = Y๐œ‡๐‘“ "9: , ๐‘ฆ โ‰ฅ 0 ๐‘” 5 ๐‘ฆ = ๐‘” 0. otherwise $# ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘” 6 ๐‘ง ๐‘’๐‘ง "# XC 2020

  30. Example 2: exponential Exponen Ex ential al di distribution 6 ๐‘ฆ = Y๐œ‡๐‘“ "9: , ๐‘ฆ โ‰ฅ 0 ๐‘” 5 ๐‘ฆ = ๐‘” 0. otherwise $# ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘” 6 ๐‘ง ๐‘’๐‘ง "# 8 ๐‘” ! ๐‘จ = 6 ๐‘” 5 ๐‘จ โˆ’ ๐‘ง ๐‘” 6 ๐‘ง ๐‘’๐‘ง 7 XC 2020

Recommend


More recommend