budget w o overheads
play

Budget (w/o overheads) Total Allocated Resources Hardware (EC/k) - PowerPoint PPT Presentation

T HE E UROPEAN R&D P ROGRAMME ON D IVERTOR A RMOR MATERIALS AND T ECHNOLOGY S TATUS AND S TRATEGY M. Rieth , S. Antusch, J. Hoffmann, M. Klimenkov, J. Reiser, S. Brezinsek, W. Biel, J. Coenen, J. Linke, Ch. Linsmeier, A. Litnovsky, Th.


  1. T HE E UROPEAN R&D P ROGRAMME ON D IVERTOR A RMOR MATERIALS AND T ECHNOLOGY – S TATUS AND S TRATEGY M. Rieth , S. Antusch, J. Hoffmann, M. Klimenkov, J. Reiser, S. Brezinsek, W. Biel, J. Coenen, J. Linke, Ch. Linsmeier, A. Litnovsky, Th. Loewenhoff, G. Pintsuk, B. Unterberg, M. Wirtz, H. Greuner, A. Kallenbach, R. Neu, J. Riesch, J.H. You, T. Barrett, F. Domptail, S. Dudarev, M. Fursdon, M. Gilbert, A. Galatanu, L.M. Garrison, Y. Katoh, L.L. Snead, D. Armstrong, S. Roberts

  2. Budget (w/o overheads) Total Allocated Resources Hardware (EC/k€) Total Allocated 2014 ‐ 18 2500 2000 1500 1000 500 0 1 2 3 4 5 273 lab ppy 30 ind ppy Manpower (EC/k€) Total Allocated 8.74 M€ hw 2014 ‐ 18 2700 2600 2500 2400 2300 1 2 3 4 5 today 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 2 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  3. Overall Objectives 2014-2018  Fill gaps in the database and develop design codes for the baseline materials focus of this presentation: armour  Development of new materials to mitigate requirements of advanced DEMO component designs  Demonstration of the production of such materials in processes scalable to industrial standards  Characterization of the properties of such materials  Develop models for neutron radiation effects , specifically microstructural evolution and embrittlement, in iron alloys, steels, tungsten, and degradation of functional materials  Perform neutron irradiation experiments 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 3 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  4. Overview of HHF Materials W Alloys (by PIM) W PLANSEE (rolled) W (PIM) Fracture Ductile @ 200 °C W ‐ 1TiC W ‐ 2Y 2 O 3 W ‐ 2La 2 O 3 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 4 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  5. Overview of HHF Materials Composites Cu/CuCrZr ‐ W ‐ fiber Pipes W ‐ W ‐ fiber Blocks Cu/CuCrZr ‐ W Pipes/Laminates CuCrZr W Cu W Cu WW Cu Cu CuCrZr 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 5 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  6. Overview of HHF Materials W ‐ Cu/CuCrZr Composite 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 6 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  7. Overview of HHF Materials Material Characterisation • microstructure, chemical analysis • physics: heat conductivity (diffusivity & heat capacity) • strength: tensile, bending (3 pt., 4 pt.) toughness: bending (fracture mechanics, DBTT, strain rate effect) • • HHF tests mockup (JUDITH & GLADIS) thermal shock (several FZJ facilities) 4 mm 4 mm 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 7 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  8. Divertor assessment methodology Typical Mock ‐ Up • A suitable method of divertor PFC assessment is a significant issue to be resolved – Current nuclear design codes neither consider multi-layer/multi-material structures nor stress due to manufacturing – Instead of “design by analysis”, ITER have used “design by experiments” including intensive HHF testing • Bespoke criteria based on elasto- plastic analyses are currently under development in EUROfusion Thermal analysis • The immediate need to facilitate PFC design optimisation was a standardised analysis procedure Stress using linear elastic code rules analysis 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 8 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  9. Standard thermo-mechanical analysis • “Monoblock Elastic Analysis Procedure” - “ MEAP ” • Coherent/consistent analyses across EU DIV project • Reserve factors (margin to failure) to 5 Rules are calculated, enabling ranking of design concepts • 2 structural rules, which are valid despite the considerable residual stress field, and 3 thermal rules 10 MW/m 2 surface heat flux is used for analyses • • NOT a method for “absolute” failure assessment! MEAP rule Rule details Ratchetting (3S m )  first check, runaway ratchetting is not expected in reality Rule #1 *. Requires material S m data. Fatigue – following IC3132.3.1*. Requires material cyclic  ‐  and  ‐ n data. Rule #2 For a CuCrZr pipe, maximum temperature <300°C to avoid creep/softening Rule #3 under irradiation. Minimum temperature > 150°C to limit embrittlement. Maximum wall heat flux < device Critical Heat Flux (burnout) Rule #4 Maximum tungsten armour temperature <1800°C , to limit recrystallisation Rule #5 * Reference: ITER Structural Design Criteria for In ‐ vessel Components, ITER G ‐ 74 ‐ MA ‐ 8 ‐ 01 ‐ 05 ‐ 28 ‐ W ‐ 0.2, 2012. 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 9 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  10. Outline  How to develop divertor materials without knowing the critical limits, which are closely connected to the design, which in turn is under development, too?  What are the relevant properties for divertor armour materials?  Do we perform appropriate assessment tests? 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 10 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  11. Load Analysis, Basic Properties HF 0.2 ‐ 1 GW/m 2 ELM  Thermal off ‐ normal 20 MW/m 2 normal 10 MW/m 2 #10000 #1 #2 2 fpy t 10 MW/m 2 + 0.4 GW/m 2 (1ms on, 50ms off) 15 MW/m 2 (30s), small monoblock ITER type monoblock 23 mm x 22 mm x 4 mm, D15 mm 28 mm x 28 mm x 12 mm, D17 mm 1800 Temperature (°C) M. Li, IPP water cooling, 200 °C 0 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 11 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  12. Load Analysis, Basic Properties HF  Mechanical, elastic 10 MW/m 2 normal Stress +740 MPa t 10s path +1200 Temperature (°C) Yield Limit (MPa) ‐ 670 MPa Stress (MPa) plastic deformation Sxx under compression ‐ 1200 path (mm) 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 12 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  13. Load Analysis, Basic Properties HF  Mechanical, plastic 10 MW/m 2 normal 10s 20s t Plastic Deformation (10 s) Secondary Stresses (20 s) Pl. Strain Stress 3.1E ‐ 3 365 MPa 2.1E ‐ 3 200 MPa 1.1E ‐ 3 0 0 ‐ 110 MPa 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 13 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  14. Load Analysis, Basic Properties HF  Mechanical, plastic 10 MW/m 2 normal Max. Stress during cooling 10s 20s t  Mechanical, dynamic • Strain rate: 10 ‐ 3 /s – 10 ‐ 2 /s • 150 °C < DBTT <250 °C • T > 300 °C  ductile regime  no brittle fratcure 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 14 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  15. Load Analysis, Basic Properties  Thermal: T surf = 1790 ‐ 2112 °C HF off ‐ normal  Recrystallisation (Rxx) 20 MW/m 2  Mechanical o plastic surface deformation > 1% 10s 20s t during heating Stress 710 MPa o secondary surface tensile stresses after cooling down: > 710 MPa 0  Dynamical: DBTT 250 ‐ 350 °C (W ‐ Rxx) ‐ 500 MPa  ductile ‐ brittle regime ‐ 973 MPa  Fracture Mechanics o K Ic = 5 ‐ 8 MPa m 1/2 (W ‐ Rxx) o critical crack length = 16 ‐ 40 µm o grain size: min. 50 µm, max. >300 µm  ductile/brittle crack formation likely 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 15 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  16. Load Analysis, Basic Properties  Thermal HF 0.2 GW/m 2 1500 10 MW/m 2 normal Temperature (°C) time 1ms 50ms t  Mechanical 350 strain rates > 1/s 300 path (mm) ‐ 200 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 16 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

  17. Load Analysis, Basic Properties HF 0.2 ‐ 1.0 GW/m 2  Mechanical  Surface Area normal 10 MW/m 2 1ms 50ms t 210 MW/m 2 , 1 ms 10 MW/m 2 , 51 ms Stress Stress 785 MPa 760 MPa 0 0 ‐ 385 MPa ‐ 350 MPa  only a thin layer (500 µm) is loaded with high strain rates (> 1/s) at 1000 ‐ 1400 °C  plastic surface deformation under tensile and compression without immediate damage  Tmax: 0.2 GW/m 2 – 1400°C, 0.4 GW/m 2 – 1750°C, 0.6 GW/m 2 – 2100°C, 0.8 GW/m 2 – 2500°C, 1 GW/m 2 – 2900°C (1 mm surface layer with 1 ‐ 5% deformation)  Recrystallisation 1st IAEA Technical Meeting on Divertor Concepts | M. Rieth et al.: EUROfusion WPMAT HHFM - Status & Strategy 17 IAEA HQ | VIC | Vienna | 29.09.-2.10.2015

Recommend


More recommend