a long simultaneous xmm nustar look of mcg 6 30 15
play

A long simultaneous XMM-NuSTAR look of MCG-6-30-15 Andrea - PowerPoint PPT Presentation

A long simultaneous XMM-NuSTAR look of MCG-6-30-15 Andrea Marinucci (Roma Tre) G. Matt, G. Miniutti, L. Brenneman, M. Guainazzi, A. Fabian, M. Parker and the NuSTAR AGN Physics WG Santorini Explosive transients: lighthouses of the Universe


  1. A long simultaneous XMM-NuSTAR look of MCG-6-30-15 Andrea Marinucci (Roma Tre) G. Matt, G. Miniutti, L. Brenneman, M. Guainazzi, A. Fabian, M. Parker and the NuSTAR AGN Physics WG Santorini Explosive transients: lighthouses of the Universe September 16 th , 2013

  2. Overview • Brief introduction on MCG-6-30-15 • The XMM-NuSTAR 2013 observational campaign • T esting the two difgerent scenarios • Results • Conclusions and future perspectives Andrea Marinucci (Roma T re) Santorini – 16/09/13

  3. Overview • Brief introduction on MCG-6-30-15 • The XMM-NuSTAR 2013 observational campaign • T esting two difgerent scenarios • Results • Conclusions and future perspectives Andrea Marinucci (Roma T re) Santorini – 16/09/13

  4. Introduction Bright Sy 1 galaxy hosting the Iwasawa+96 fjrst broad Fe K  line ever observed (T anaka+95) and interpreted as originating from a rapidly spinning BH (Iwasawa+96) T anaka+95 Andrea Marinucci (Roma T re) Santorini – 16/09/13

  5. X-ray observations Extensively observed in the X-rays: Miniutti+07 • complex absorption (Lee+01, Chiang&Fabian+11) • strong refmetion hump (Miniutti+07) • very broad Fe Ka line (Brenneman&Reynolds+06) Chiang&Fabian+11 Andrea Marinucci (Roma T re) Santorini – 16/09/13

  6. Refmection scenario Reynolds+96 Variable PLC Constant RDC Fabian&Vaughan+03 Light bending model: much of the fmux is bent onto the disk giving a constant, strong RDC Miniutti&Fabian+04 Andrea Marinucci (Roma T re) Santorini – 16/09/13

  7. Absorption scenario An alternative interpretation Miller+08 explains the spectral variability in terms of absorption changes “3+2” MODEL 3 fully covering warm absorbers 1 ionized absorber fully covering the distant refmection component (N H ~5x10 23 cm -2 , log  ~2.0) 1 ionized absorber partial covering the X-ray source (N H ~4x10 22 cm -2 , log  ~1.5) Andrea Marinucci (Roma T re) Santorini – 16/09/13

  8. • Brief introduction on MCG-6-30-15 • The XMM-NuSTAR 2013 observational campaign • T esting the two difgerent scenarios • Results • Conclusions and future perspectives Andrea Marinucci (Roma T re) Santorini – 16/09/13

  9. NuSTAR-XMM light curves Andrea Marinucci (Roma T re) Santorini – 16/09/13

  10. Spectral features NuSTAR FpmA-FpmB XMM-Newton EPIC-Pn A broad Iron line, an intense soft excess and a strong Compton hump are present in the low fmux spectrum (fjt to a  =2 power law). Andrea Marinucci (Roma T re) Santorini – 16/09/13

  11. • Brief introduction on MCG-6-30-15 • The XMM-NuSTAR 2013 observational campaign • T esting the two difgerent scenarios • Results • Conclusions and future perspectives Andrea Marinucci (Roma T re) Santorini – 16/09/13

  12. Fitting strategy Andrea Marinucci (Roma T re) Santorini – 16/09/13

  13. Fitting strategy Warm Absorbers Underlying Continuum Combined RGS EPIC-Pn + NuSTAR spectra FpmA,B REFLECTION ABSORPTION 2*XSTAR*DUST 2*XSTAR*DUST x x (Xillver + Relconv*Xillver + zpow) (XSTAR*Xillver + XSTAR*zpo + zpo) XSTAR tables XILLVER instead of REFLIONX: http://hea-www.cfa.harvard.edu/~javier/xillver/ Iron UTA tables for dust RELCONV for relativistic blurring: http://www.sternwarte.uni- erlangen.de/~dauser/research/relline/ Andrea Marinucci (Roma T re) Santorini – 16/09/13

  14. Combined RGS1+2 analysis C/dof=7495/4058=1.84 N H1 =(4.6 +/- 0.8) x10 20 cm -2 log  1 =1.47+/- 0.2 v~2000 km s -1 N H2 =(1.3 +/- 0.2) x10 20 cm -2 log  2 =0.08+ 0.10 N H3 =(1.00+/- 0.04) x10 22 cm -2 log  3 =2.03+ 0.01 logN Fe =17.32+/-0.02 xillver Norm = 9.3E-06 +/- 0.8E-6  =2.03 +/- 0.02 norm 1.58E-02 +/- 0.02E-2 We then applied the combined best fjt to the three separate RGS1+2 data sets Andrea Marinucci (Roma T re) Santorini – 16/09/13

  15. Separate RGS1+2 analysis Orbit 1 N H1 (5.6 +/- 1.7) x10 20 cm -2 C/dof=15956/12107=1.31 log  1 1.82+/- 0.05 v~2000 km s -1 N H2 (8.6 +/- 1.8) x10 20 cm -2 log  2 1.47+ 0.05 N H3 (1.00+/- 0.04) x10 22 cm -2 log  3 2.04+ 0.01 logN Fe 17.33 +/- 0.02 xillver norm 9.3E-06 +/- 0.8E-06   2 03  norm 1.58E-02 +/- 0.02E-2 Orbit 2 N H1 (4.0 +/- 1.8) x10 20 cm -2 log  1 1.85+/- 0.1 v~2000 km s -1 N H2 (2.9 +/- 0.5) x10 20 cm -2 log  2 1.34+ 0.13 N H3 (1.00+/- 0.09) x10 22 cm -2 log  3 2.02+ 0.02 logN Fe 17.27 +/- 0.04  2.03 norm 1.22E-02 +/- 0.02E-02 Orbit 3 No signifjcant variation N H3 (0.88+/- 0.02) x10 22 cm -2 N H1 (5.1 +/- 2.5) x10 20 cm -2 log  3 2.00+ 0.03 log  1 1.75+/- 0.23 has been found in the logN Fe 17.08 +/- 0.12 v~2000 km s -1 N H2 (5.0 +/- 1.0) x10 20 cm -2  warm absorbing structure  2.03 log  2 1.3+/- 0.3 norm 0.8E-02 +/- 0.4E-03 Andrea Marinucci (Roma T re) Santorini – 16/09/13

  16. Time resolved simultaneous analysis Ratjo of 11 spectra to power-law   2 02 variable norm, Galactjc abs  Refmectjon, WA removed  Andrea Marinucci (Roma T re) Santorini – 16/09/13

  17. • Brief introduction on MCG-6-30-15 • The XMM-NuSTAR 2013 observational campaign • T esting the two difgerent scenarios • Results • Conclusions and future perspectives Andrea Marinucci (Roma T re) Santorini – 16/09/13

  18. Results: refmection Warm absorbers  2 /dof=3330/2788=1.19 N H1 =(0.6-2.5) x10 22 cm -2 log  1 = 1.98 ± 0.01 N H2 =(0.5-3.0) x10 21 cm -2 log  2 = 1.27±0.02 logN Fe =16.6 ± 0.2 Refmection parameters (q=3.0 a=0.998 incl=37°) Primary emission parameters log  = 0.2-3.0  2.050±0.005 A Fe =1.56±0.32 E c >100 keV Andrea Marinucci (Roma T re) Santorini – 16/09/13

  19. RDC vs PLC fmuxes Constancy of the RDC between Variation of a factor ~2 observed 10-80 keV (thanks to NuSTAR) in the RDC between 0.5-10 keV, in agreement with the PCA Marginal response from the (Parker et al., submitted) accretion disk to the nuclear emission? Andrea Marinucci (Roma T re) Santorini – 16/09/13

  20. Accretion disk response There is a response of the ionization state of the accretion disk to the variation of the PLC Andrea Marinucci (Roma T re) Santorini – 16/09/13

  21. Results: absorption 2 warm absorbers  2 / dof=3610/2818=1.27 N H1 =(1.3±0.2) x10 22 cm -2 log  1 = 1.95 ± 0.02 N H2 =(4.2±1.5) x10 21 cm -2 log  2 = 2.82±0.05 logN Fe =16.9 ± 0.1 Further absorbers ✓ (Xillver: log  = 2.4±0.05; A fe =0.5±0.1 p ) N H3 =(3.0±0.4) x10 23 cm -2 ✓ Primary emission parameters log  3 = 2.11 ± 0.01  2.16±0.01 E c >100 keV N H4 =(0.3-27) x10 21 cm -2 ✗ log  4 =( 0.0015±0.0005) [almost neutral] Andrea Marinucci (Roma T re) Santorini – 16/09/13

  22. Covering factor time evolution An eclipse, due to a variation of ~2x10 22 cm -2 , has been found, despite of the model. Old value combined value Andrea Marinucci (Roma T re) Santorini – 16/09/13

  23. • Brief introduction on MCG-6-30-15 • The XMM-NuSTAR 2013 observational campaign • T esting the two difgerent scenarios • Results • Conclusions and future perspectives Andrea Marinucci (Roma T re) Santorini – 16/09/13

  24. Conclusions • The warm absorbing structure is consistent with literature, except for the lack of highly ionized absorption lines; • The refmection scenario well explains the behavior of the source, from 0.4 keV up to 80 keV • Spectral variability can be explained in terms of strong variations of the PLC and to marginal variations in the RDC • An alternative is that the spectral variability can be attributed to a change in covering fraction of the X-ray source AND to a change of N H. • Clear evidence of BLR eclipses have been found Andrea Marinucci (Roma T re) Santorini – 16/09/13

  25. Thanks! Andrea Marinucci (Roma T re) Santorini – 16/09/13

  26. Backup Miller+08 Andrea Marinucci (Roma T re) Santorini – 16/09/13

  27. Backup 9 10 11 Andrea Marinucci (Roma T re) Santorini – 16/09/13

  28. Backup  2 / dof=2174/435=4.99  2 / dof=432/430=1.00 Difgerence between the highest fmux N H1 =(9.8±2.5)x10 21 cm -2 spectrum (42.19±0.07 cts/s) and a low log  1 = 2.0 ± 0.1  2.16±0.03 fmux one with constant HR (17.79±0.04 cts/s) N H2 =(2.1 ±1.9)x10 21 cm -2 log  2 = 1.4±0.2 A fjrst fjt with an absorbed power law leads to strong residuals, mainly due to the warm absorbing structure logN Fe =17.2 ± 0.3 Andrea Marinucci (Roma T re) Santorini – 16/09/13

Recommend


More recommend