calorimetric low temperature detectors
play

Calorimetric Low Temperature Detectors FAIR for Applications in - PowerPoint PPT Presentation

Calorimetric Low Temperature Detectors FAIR for Applications in NUSTAR Peter Egelhof GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt, Germany and University Mainz, Germany NUSTAR Annual Meeting 2016 GSI, Darmstadt February 29 -


  1. Calorimetric Low Temperature Detectors FAIR for Applications in NUSTAR Peter Egelhof GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany and University Mainz, Germany NUSTAR Annual Meeting 2016 GSI, Darmstadt February 29 - March 4, 2016

  2. Calorimetric Low Temperature Detectors FAIR for Applications in NUSTAR I. Introduction II. Detection Principle and Basic Properties of Calorimetric Low Temperature Detectors (CLTD`s) III. CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance IV. Applications of CLTS`s in Heavy Ion Physics - Status and Perspectives V. Conclusions

  3. I. Introduction The success of experimental physics and the quality of the results generally depends on the quality of the available detection systems ! ⇒ idea: detection of radiation independent of ionisation processes � calorimetric detector ° thermometer particle or photon potential advantage: phonons • energy resolution interaction of radiation with matter: • energy linearity primary: ionization, ballistic phonons • detection threshold (conventional ionisation detectors) • radiation hardness secondary: thermalization: conversion of energy to heat ⇒ various applications in ⇒ detection of thermal phonons many fields of physics ⇒ calorimetric detectors

  4. Applications of Low Temperature Detectors - an Overview Astrophysics: Atomic and Nuclear physics: • X-ray detection • dark matter ⇒ high energy resolution ⇒ low detection threshold • Ion detection • solar neutrinos ⇒ high energy resolution ⇒ low detection threshold ⇒ good energy linearity • cosmic x-rays Applied physics: ⇒ high energy resolution • x-ray material analysis Particle physics: ⇒ high energy resolution • ββ 0 ν -decay • life sciences ( MALDI ) ⇒ absorber = source ( 130 Te) ⇒ high energy resolution neutrino mass from β - endpoint determ. • for more detailed information see: ⇒ absorber = source ( 187 Re) • Cryogenic Particle Detection, Topics in Applied Physics 99 (2005) Proceedings 15 th Int. Workshop on • Low Temperature Detectors, JLTP (2014), 320 participants!

  5. II. Detection Principle and Basic Properties of Calorimetric Low Temperature Detectors (CLTD`s) detection principle: thermal signal: absorber C incident particle thermometer R (T) ∆ T t 1 t 2 with energy E T ⇒ ⇒ T + ∆ ⇒ ⇒ ∆ ∆ ∆ T k thermal coupling time heat sink amplitude: ∆ T = E/C (C = c • m = heat capacity) rise time: τ 1 ≥ τ therm ( ≈ 1 – 10 µ sec) τ 2 = C/k ( ≈ 100 µ sec – 10 msec) fall time:

  6. Optimization of the Sensitivity a) absorber: maximum sensitivity ∆ T = E/mc for – small absorber mass m – small specific heat c + β (T/ θ D ) 3 due to: c = α T ( θ D = Debye-temperature) electrons lattice ⇒ low operating temperature ⇒ „low-temperature detector“ ( α T dominating for T ≤ 10K ⇒ insulators ( α = 0) or superconductors) R b) thermometer: for thermistor (bolometer): ∆ T → ∆ R → ∆ U ⇒ maximum sensitivity for large dR/dT – semiconductor thermistor due to appropriate doping ⇒ exponential behavior of R(T) – superconducting phase transition thermometer T

  7. Potential Advantage over Conventional Detectors • small energy gap ω ⇒ better statistics of the detected phonons semiconductor detector: ω ≈ 1 eV ω ≤ 10 -3 eV calorimetric detector: ω ∆ E N 1 phon calorimete r = electr . = ≤ ∆ ω E N 30 semicond . det . phon . electr . more complete energy detection ⇒ better linearity and resolution • energy deposited in phonons and ionisation contributes to the signal (for ionisation detectors: losses up to 60-80% due to: - recombination - direct phonon production) • small noise power at low temperatures • method independent on absorber material ⇒ optimize radiation hardness, absorption efficiency, etc.

  8. Theoretical Limit for the Energy Resolution for ideal calorimetric detector: - thermodynamic fluctuations (quantum statistics) - Johnson noise - amplifier noise ⇒ 5 < ∆ >= ξ • < ξ < E k T c m 1 3 B noise thermodynamic fluctuations 1 MeV particle in a 1 mm 3 sapphire absorber example: ⇒ for low temperature: microscopic particle affects the properties of a macroscopic absorber

  9. III. CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance Detector Design and Perfomance: for an overview see: heavy ions P.E. and S. Kraft-Bermuth, slit aluminium- Top. Appl. Phys. 99 (2005) 469 thermometer low temperature absorber varnish copper coldplate heat sink U R L signal absorber: sapphire-crystal: V= 3 x 3 mm² x 430 µm aluminium-film (d = 10 nm), T C ≈ 1.5 ° K (in the range of a 4 He-cryostat) thermometer: (for impedance matching to the amplifier: ⇒ meander structure) readout: conventional pulse electronics +Flash-ADC`s +Digital Filtering

  10. III. CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance Detector Design and Perfomance: for an overview see: heavy ions P.E. and S. Kraft-Bermuth, slit aluminium- Top. Appl. Phys. 99 (2005) 469 thermometer low temperature 150 absorber varnish normal state 100 R [k Ω ] operation copper temperature coldplate heat 50 sink super- transition region: U R conducting dR/dT ≈ const L 0 1.60 1.62 1.64 1.66 T [K] signal absorber: sapphire-crystal: V= 3 x 3 mm² x 430 µm aluminium-film (d = 10 nm), T C ≈ 1.5 ° K (in the range of a 4 He-cryostat) thermometer: (for impedance matching to the amplifier: ⇒ meander structure) readout: conventional pulse electronics +Flash-ADC`s +Digital Filtering

  11. CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance 3 mm detector pixel: • absorber: heating absorber 3 x 3 x 0.43 mm 3 sapphire (Al 2 O 3 ) resistor • thermometer: Transition Edge Sensor (TES) 10 nm thick meander shaped Al-layer aluminum ⇒ photolithography (high purity!!) thermometer • heating resistor: cryostat Au/Cr strip • operation temperature: T c = 1.5 – 1.6 K CLTD-array detector array: • 8 pixels with individual temperature stabilization in operation • active area: 12 mm x 6 mm • windowless coupling of cryostat to beam line

  12. New Large Solid Angle Detector Array number of pixels: 25 active area: 15 X 15 mm 2

  13. CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance detector performance: response to 32 S ions @ 100 MeV 6 -3 τ rise = 35 µs ∆ E/E = 1.6x10 80 rate capability: 4 ∆ E = 166 keV τ decay = 150 µs counts/bin 60 ≥ 200 sec -1 Volts 2 resolution: 40 0 ∆ E/E = 1.6 x 10 -3 20 -2 0 0 500 1000 1500 101.6 102.0 102.4 E [MeV] time [µs] systematical investigation of energy resolution: for 209 Bi, E = 11.6 MeV/u ⇒ ∆ E/E = 1.8 x 10 -3 with UNILAC-beam: for 238 U, E = 360 MeV/u ⇒ ∆ E/E = 1.1 x 10 -3 with ESR-beam: for 152 Sm, E = 3.6 MeV/u ⇒ ∆ E/E = 1.6 x 10 -3 with Tandem-beam: ⇒ for heavy ions: ≥ 20 x improvement over conventional Si detectors

  14. Comparison of Detector Performance: CLTD – Conventional Si Detector 1600 500 conventional energy resolution: 1400 calorimetric Si - detector 400 1200 detector example: counts/bin 1000 300 counts/bin ∆ E = 2808 keV ∆ E = 91 keV 800 238 U @ 20.7 MeV ) 200 600 400 100 200 S. Kraft-Bermuth et al. 0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 energy [MeV] Rev. Sci. Instr. 80 (2009) 103304 energy [MeV] 2400 7000 � 4 He 2200 � 4 He energy linearity: 6000 peak position [channel] peak position [channel] 2000 � 13 C � 13 C 5000 1800 example: � 197 Au � 197 Au 4000 1600 � 238 U � 238 U 3000 1400 13 C, 197 Au, 238 U 13 C, 197 Au, 238 U 2000 1200 1000 1000 0 800 0 10 20 30 40 50 60 70 0 5 10 15 20 25 E [MeV] E [MeV] for conventional ionization detector: high ionization density leads to charge recombination (E- and Z- dependent) ⇒ pronounced pulse height defects ⇒ nonlinear energy response ⇒ fluctuation of energy loss processes ⇒ limited energy resolution

  15. IV. Applications of CLTD`s in Heavy Ion Physics (NUSTAR) – Status and Perspectives • High Resolution Nuclear Spectroscopy • Investigation of Stopping Powers of Heavy Ions in Matter • In-Flight Mass Identification of Heavy Ions • Investigation of Z-Distribution Yields of Fission Fragments

  16. Applications: a) High Resolution Nuclear Spectroscopy nuclear spectroscopy: • elastic and inelastic scattering ⇒ separation of inelastic channels ⇒ identification of reaction channels • nuclear reactions Example: Nat Pb ( 20 Ne, 20 Ne’), E = 100 MeV/u (CLTD adjusted to range of Ne ions) investigation of giant resonances elastic scattering (collective excitation of nuclear matter) 1000 events / channel J. Meier et al. giant resonance expected 100 Nucl. Phys. A 626 (1997) 451c 10 1900 1920 1940 1960 potential applications: energy [MeV] ⇒ investigation of multi phonon giant resonances ⇒ reactions at low energies (LEB at FAIR)

Recommend


More recommend