2d fets with mos 2 wse 2 and black phosphorous toward
play

2D FETs with MoS 2 , WSe 2 , and black phosphorous toward practical - PowerPoint PPT Presentation

2D FETs with MoS 2 , WSe 2 , and black phosphorous toward practical electronics Seongil Im E-mail: semicon@yonsei.ac.kr Lab. Website: Http://edlab.yonsei.ac.kr Introduction The most widely studied 2-D material Conical Dirac spectrum Energy


  1. 2D FETs with MoS 2 , WSe 2 , and black phosphorous toward practical electronics Seongil Im E-mail: semicon@yonsei.ac.kr Lab. Website: Http://edlab.yonsei.ac.kr

  2. Introduction The most widely studied 2-D material Conical Dirac spectrum Energy states without a bandgap High mobility (< 100000cm 2 /Vs) More conductive than copper Attractive optical phenomena More Flexible than rubber Stretchable material Stronger than diamond Various formation (ribbon, tube, ball...) K. S. Kim Nature 457 , 706 (2009) K. S. Novoselov et al.Science 306 , 666 (2004) Limitation of Graphene Gapless Band Structure → Unsuitable for switching devices

  3. Transition Metal Dichalcogenides Transition Metal Dichalcogenides (MX 2 ) Similar storyline of the graphene family 2D and layered (thin-film) structures Covalently bonded X-M-X held together by Van der Waals interactions Broken symmetry in atomic basis can make Band Gap of ~ 1 eV M. Chhowala et al. Nature Chem. 5 , 263 (2013) -S 2 -Se 2 -Te 2 Nb Metal Metal Metal Ta Metal Metal Metal Semiconducting Semiconducting Semiconducting Mo (1L : 1.8eV , Bulk : 1.2eV) (1L : 1.5eV , Bulk : 1.1eV) (1L : 1.1eV , Bulk : 1.0eV) Semiconducting Semiconducting Semiconducting W (1L : 1.9eV , Bulk : 1.4eV) (1L : 1.7eV , Bulk : 1.2eV) (1L : 1.1eV) modified version of Q. H. Wang et al. Nature Nanotech. 7 , 699 (2012)

  4. Recent Progress on 2D Nanosheet in World Researches FET –countless many reports (e.g. A. Kis in Nat Nano. 2011) 1. Field-Effect Transistors Built from All Two-Dimensional Material Components, ACS Nano, 8 , 6259 (2014) 2. Impact of Contact on the Operation and Performance of Back-Gated Monolayer MoS 2 Field-Effect-Transistors, ACS Nano, 9 , 7904 (2015) 3. Highly Stable, Dual-Gated MoS 2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage, ACS Nano , 9 , 7019 (2015) CMOS –several reports 1. High gain, low noise, fully complementary logic inverter based on bi-layer WSe 2 field effect transistors, Appl. Phys. Lett . , 105 , 083511 (2014) 2. High Gain Inverters Based on WSe 2 Complementary Field-Effect Transistors, ACS Nano , 8 , 4948 (2014) 3. High-Performance WSe 2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits, Nano Letters , 15, 4928 (2015) pn diode-several reports 1. Dual-Gated MoS 2 /WSe 2 van der Waals Tunnel Diodes and Transistors, ACS Nano , 9 , 2071 (2015) 2. Black Phosphorus–Monolayer MoS 2 van der Waals Heterojunction p–n Diode, ACS Nano , 8 , 8292 (2014) 3. Epitaxial growth of a monolayer WSe 2 -MoS 2 lateral p-n junction with an atomically sharp interface, Science , 249, 524 (2015) 4. Vertical Heterostructure of Two-Dimensional MoS 2 and WSe 2 with Vertically Aligned Layers , Nano Letters , 15 , 1031 (2015) 5. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions, Nat. Nanotechnol ., 9 , 1024 (2014) ACS Nano , 8 , 8292 (2014) Nano Letters , 15, 4928 (2015)

  5. Outline l Introduction : Outline and Motivation l Progress on 2D Nanosheets in World Researches ------------------------------------------------------------------------------------ l Progress on 2D Nanosheets in our Lab § Top-gate MoS 2 FET, Nonvolatile Memory FETs and P-N diode § 2D-2D, 2D-1D, 2D-Organic Hybrid Complementary Inverter § Black Phosphorous Dual Gate FETs § NiOx-MoS 2 van der Waals junction MESFET § Summary

  6. Photo-Excited Charge Collection Spectroscopy For n-channel FET (i. e. oxide semiconductor) IGZO Drain Current e - e - E C Initial e 1 < e 2 (dark state) E Fn D it : DOS of interfacial traps e 1 = h n 1 Modification of Q eff e 2 = h n 2 E V E F Result in V th shift!! Gate Voltage Gate Dielectric n-channel Making on-state All interfacial (electron) traps (accumulation) are occupied… C V (ε) ¶ ΔQ eff = C ΔV th D (CBM ε) - = ox th Δ V th (ε) it q ε ¶

  7. Recent Progress on 2D Nanosheet (IM) 1.Nanosheet Band-Gap & Thickness Modulation 2. Nanosheet-Dielectric Interface Trap MoS 2 Nanosheet Phototransistors with Thickness-modulated Trap density probing on top-gate MoS 2 Nanosheet field- Optical Energy Gap, Nano Lett. (2012) effect transistors by photo-excited charge collection spectroscopy, Nanoscale (2015) Trap density (X10 12 cm -2 ) obtained from Number of MoS 2 Hystere- Hysteresis & PECCS SS layer sis PECCS 2 1.92 1.00 2.92 6.67 3 1.26 1.15 2.41 7.10 4 2.47 1.37 3.84 7.69

  8. Recent Progress on 2D Nanosheet (IM) 3. Nonvolatile Memory FETs 4. 2D-2D van der Waals p-n diode MoS 2 Nanosheets for Top-Gate Nonvolatile Memory Enhanced device performance of WSe 2 -MoS 2 van der Transistor Channel, Small (2012) Waals junction p-n diode by fluoropolymer encapsulation, JMC C (2015) -3 10 -4 10 -5 10 Drain Current (A) write WR pulse -6 10 ER pulse V D = 1 V -7 10 -8 10 erase -9 10 -10 10 -11 10 -12 10 -20 -15 -10 -5 0 5 10 15 20 Gate Voltage (V)

  9. 2D-2D, 2D-1D, 2D-Organic Hybrid Complementary Inverter P P . J. Jeon et al. ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.5b06027 (2015) . J. Jeon et al. ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.5b06027 (2015) S. H. Hosseini Shokouh et al., Adv. Mater. 2015, 27 , 150 (2015) S. H. Hosseini Shokouh et al., Adv. Mater. 2015, 27 , 150 (2015) H.S. Lee et al. Small, 11 , 2132 (2015) H.S. Lee et al. Small, 11 , 2132 (2015)

  10. Fabrication : Direct Imprinting Method Transferred flakes Transferred flakes Step1 | Flake exfoliation Step2 | Alignment Step3 | Flake imprinting on patterned-gate on patterned-gate MoS 2 WSe 2 Source/Drain Source/Drain patterning patterning MoS 2 Au/Ti Pt WSe 2 Step4 | MoS 2 transfer Step5 | WSe 2 transfer Step6 | SD patterning 10 μm

  11. 2D p-WSe 2 and n-MoS 2 FETs on Wafer WSe 2 FET Transfer Curve MoS 2 FET Transfer Curve Output Curves 0.8 0.8 WSe 2 FET MoS 2 FET V G =-10 V 0.6 0.6 -Drain Current ( m A) Drain Current ( m A) |∆V G |=2 V V G =10 V 0.4 0.4 0.2 0.2 0.0 0.0 -1.0 -0.5 0.0 0.5 1.0 Drain Voltage (V) 10 μm - 285 nm-thick SiO 2 /p + -Si substrate MoS 2 - Large operation voltage in a range of V G =-20~10 V (V TH =+5 V for p-WSe 2 , V TH =-15 V for n-MoS 2 ) WSe 2 - Large gate-source leakage current of I GS ~100 pA - Large overlap area between un-patterned gate and source/drain electrodes

  12. Complementary Inverter on Wafer Complementary inverter VTC Dynamic switching f=10 Hz 1 1 1 1 V DD =1~5 V 0 V DD =5 V 5 V IN (V) Output Voltage (V) -5 4 0 0 0 0 -10 3 2 1 1 1 1 2 V OUT (V) V DD =1 V 1 0 0 0 0 0 0 -15 -10 -5 0 0.0 0.1 0.2 0.3 0.4 Time (s) Input Voltage (V) 4 10 10 - Negative transition voltage of V TR =-7.5 V Gain 8 2 10 Gain (-dV OUT /dV IN ) (not suitable for practical applications Power (nW) 6 0 10 - Voltage gain (–dV OUT /dV IN ) : ~6 4 -2 10 - Peak power consumption (P=V DD xI DD ) : ~1 μW 2 Power -4 10 - Large switching delay of 10 ms 0 -20 -15 -10 -5 0 -20 -15 -10 -5 0 Input Voltage (V) due to overlap capacitance-induced booster effects Input Voltage (V)

  13. 2D p-WSe 2 and n-MoS 2 FETs on Glass WSe 2 FET Transfer Curve MoS 2 FET Transfer Curve Fluoropolymer CYTOP CYTOP CF 2 CF 2 CF CF n O CF 2 CF 2 - 50 nm-thin Al 2 O 3 (ALD)/ Patterned gate on glass substrate : Low operation voltage of V G =-5 ~ +5 V : Low gate-source leakage current of <100 fA - Fluoropolymer CYTOP encapsulation (C-F bond-induced dipoles) : Induced more hole carriers into thin p-WSe 2 (positive V TH shift) : Reduced electrons in thin n-MoS 2 (reduced on-current).

  14. Complementary Inverter on Glass VTC before CYTOP VTC after CYTOP Dynamic Switching 4 4 10 10 f=500 Hz Pristine CYTOP 1 V DD =5 V V DD =5 V 0 encapsulation 5 5 2 2 V IN (V) 10 10 Output Voltage (V) Output Voltage (V) V DD =4 V V DD =4 V 4 4 Power (nW) Power (nW) -5 0 0 10 10 0 3 3 1 2 2 2 -2 -2 10 10 V OUT (V) 1 1 -4 -4 10 10 0 0 0 0 0 10 20 30 -2 -1 0 1 2 3 0 1 2 3 4 5 Time (ms) Input Voltage (V) Input Voltage (V) - Positive transition voltage shift after CYTOP encapsulation (V TR ; 0.1 V → 2.3 V) - High voltage gain of 23 at V DD =5 V - Subnanowatt power consumption : P peak ~1 nW - Ideal noise margin ( NM L =0.385xV DD , NM H =0.495xV DD at V DD =5 V) - Switching delay : ~800 μs

  15. Pass Transistor Logic Gates NOT gate NOT gate OR gate OR gate AND gate AND gate 3 V A B V IN V OUT V OUT V OUT 0 V B A 3 NOT; (V IN ) OR; (A,B) AND; (A,B) 3 3 Output Voltage (V) Output Voltage (V) Output Voltage (V) 2 2 2 1 1 1 (0) (1) (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1) 0 0 0 0 5 10 15 20 0 10 20 30 40 0 10 20 30 40 Time (s) Time (s) Time (s) A B V OUT =A+B A B V OUT =AxB V IN V OUT 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1

  16. 2D-1D Hybrid Complementary Inverter Voltage gain of 60 and subnanowatt power consumption at static states Highest gain and lowest power consumption for reported 2D material based inverter S. H. Hosseini Shokouh et al., Adv. Mater. 2015, 27 , 150 (2015) S. H. Hosseini Shokouh et al., Adv. Mater. 2015, 27 , 150 (2015)

  17. 2D-Organic Hybrid Complementary Inverter Forecast some possibility to use 2D FET combined H.S. Lee et al. Small, 11 , 2132 (2015) H.S. Lee et al. Small, 11 , 2132 (2015) with Org. Elec. ?

  18. Dual gate black phosphorous field effect transistors on glass for NOR logic and organic light emitting diode switching J. S. Kim et al. Nanoletters, 15 , 5778, (2015) J. S. Kim et al. Nanoletters, 15 , 5778, (2015)

  19. Images and Raman spectra Thickness ~ 12 nm

Recommend


More recommend