the next generation of battery for high energy density
play

THE NEXT GENERATION OF BATTERY FOR HIGH ENERGY DENSITY AND POWER - PowerPoint PPT Presentation

THE NEXT GENERATION OF BATTERY FOR HIGH ENERGY DENSITY AND POWER DENSITY Main Principle Investigators Professor Feiyu Kang Department of Material Science, Tsinghua University Beijing 100084, P. R. China


  1. � � � THE NEXT GENERATION OF BATTERY FOR HIGH ENERGY DENSITY AND POWER DENSITY � Main Principle Investigators : � Professor Feiyu Kang � Department of Material Science, Tsinghua University � Beijing 100084, P. R. China � Phone:+86-10-6277-3752; Fax:+86-10-6277-3752; Email: fykang@tsinghua.edu.cn � � Professor Gregory C. Rutledge � Department of Chemical Engineering, Massachusetts Institute of Technology � 77 Massachusetts Avenue, Room 66-550 � Cambridge, MA 02139, USA � Phone: +1-617-253-0171; Fax: +1-617-258-5766; Email: rutledge@mit.edu � Professor Alan H. Windle � Department of Materials Science & Metallurgy University of Cambridge Telephone: +44 1223 334323; Fax: +44 1223 335637 Email: ahw1@cam.ac.uk �

  2. Co-Principle Investigators : � � Dr. Ying Yang � Department of Electrical Engineering, Tsinghua University � Beijing 100084, P. R. China � Phone:+86-10-6278-3543; Fax: :+86-10-62792303 ; Email: yingyang@tsinghua.edu.cn � Professor T. Alan Hatton � Department of Chemical Engineering, Massachusetts Institute of Technology � 77 Massachusetts Avenue, Room 66-309 � Cambridge, MA 02139, USA � Phone: +1-617-253-4588; Fax: +1-617-253-8723; Email: tahatton@mit.edu �

  3. � Asymmetric Supercapacitor △ E AC ¡ ¡ △ E MnO2 ¡ ¡ Negative C AC : 80 F/g Positive C MnO2 : 310 F/g I = 0.5 A/g; 0.1 mol L -1 Ca(NO 3 ) 2 C = 45 F/g Energy density : � 35-40 Wh/Kg 1. FY Kang, BH Li, CJ Xu. Recent Progress on Manganese Dioxide Based Supercapacitors, Journal of Materials Research, 2010, Accepted. 2. Chengjun Xu, Baohua Li, Hongda Du, et al. Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. J. Power Sources , 2008,180: 664-670.

  4. Morphology and Electrochemical performance of MnO 2 /CNF � ¡ 0.004 0.003 0.002 2 ) C urrent ¡D ens ity ¡(A/cm 0.001 0.000 ¡ -­‑0.001 -­‑0.002 ¡C NF ¡MnO 2 /C NF -­‑5 ¡MnO 2 /C NF -­‑15 -­‑0.003 ¡MnO 2 /C NF -­‑30 ¡MnO 2 /C NF -­‑60 -­‑0.004 0.0 0.2 0.4 0.6 0.8 1.0 P otential ¡(V ¡vs .S C E ) Conformal and uniform MnO 2 coating on CNF; � Electrode � C MnO2 (F/g, 5mV/s) � MnO 2 Coating thickness increases with increasing reaction time at the expense of CNF � MnO 2 /CNF-5 � 568 � MnO 2 /CNF-15 � 331 � MnO 2 /CNF-30 � 328 � MnO 2 /CNF-60 � 188 � CNF � 4 � 1 Amorphous structure of MnO 2 /CNF nanocomposites � C I ( V ) dV Average specific Capacitance calculated = ∫ mv V Δ by �

  5. New Anode Materials for Lithum Ion Battery � Li|LiPF 6 |Fiber 200mA/g � Ø Lin Zou, Lin Gan, Ruitao Lv, Mingxi Wang, Zheng-hong Huang, Feiyu Kang, and Wanci Shen. A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Carbon.2011,49(1): 89-95 Ø Y Yang, Z. Guo, H. Zhang, YY Shi, FY Kang, TA Hatton and GC Rutledge. A self-supported porous carbon nanofibers that contain Fe3O4 nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Preparation to be submitted. �

  6. Composite Electrospun Membrane for Li-ion Battery Separator � PAN ¡ PVDF ¡ PMMA ¡ Polyimide ¡ & ¡ Various ¡ structures ¡ Polyimide electrospun membrane � Impedance spectroscapy of PVDF membrane � First charge and discharge cycle of PVDF membrane �

  7. Thank You For Your Attention! �

Recommend


More recommend