system identification for quantum markov processes
play

System identification for quantum Markov processes Mdlin Gu School - PowerPoint PPT Presentation

System identification for quantum Markov processes Mdlin Gu School of Mathematical Sciences University of Nottingham High dimensional problems and Quantum Physics Paris 2015 Outline Quantum parameter estimation classical and


  1. System identification for quantum Markov processes Mădălin Guţă School of Mathematical Sciences University of Nottingham High dimensional problems and Quantum Physics Paris 2015

  2. Outline Quantum parameter estimation ◮ classical and quantum Fisher information ◮ local asymptotic normality for i.i.d. models Quantum Markov chains ◮ ergodic dynamics, output state ◮ CLT and LAN for time averages of output measurements ◮ quantum Fisher information and quantum LAN ◮ identifiability classes Quantum enhanced metrology ◮ atom maser ◮ dynamical phase transitions and Heisenberg scaling ◮ metastability

  3. Quantum parameter estimation ρ θ X ∼ P M ˆ M θ θ Estimation problem: estimate θ by performing a measurement M on system in state ρ θ What is quantum about this ? ◮ fixed measurement: "classical stats" problem with special probabilistic structure ◮ "optimal" measurement: need to understand structure of quantum statistical model Classical and quantum Cramér-Rao bounds 1 : if ˆ θ is unbiased h i (ˆ θ − θ ) T · (ˆ ≥ I M ( θ ) − 1 ≥ F ( θ ) − 1 E θ − θ ) Classical Quantum Fisher info Fisher info 1 A. Holevo. Probabilistic and Statistical Aspects of Quantum Theory 1982; S. L. Braunstein and C. M. Caves, P.R.L. 1994

  4. Pure states models one parameter pure state rotation model: | ψ θ � := e − iθG | ψ � , � ψ | G | ψ � = 0 Quantum Fisher information: 2 � dψ θ � = 4Var ψ ( G ) = 4 � ψ � � G 2 � � ψ � F ( θ ) = 4 � � dθ � � Quantum Gaussian shift model: CV system [ Q , P ] = i 1 P � � �� � � F/ 2 θ coherent state with mean F/ 2 θ, 0 ◮ � � Q �� � ◮ quantum Fisher information = 4Var F/ 2 P = F ◮ QFI achievable by measuring Q 2D quantum Gaussian shift model incompatibility of P and Q ⇒ F not achievable

  5. Convergence to Gaussian model for i.i.d. ensembles P � E � ψ ⊗ n � θ 0 + v/ p n Q p F/ 2 u p F/ 2 v � E � ψ ⊗ n � θ 0 + u/ p n Quantum data: ensemble of n identically prepared systems e iθG | ψ � � ⊗ n , | ψ θ � ⊗ n := � � ψ | G | ψ � = 0 Local asymptotic normality (Holstein-Primakov): In an “uncertainty neighbourhood" of size n − 1 / 2 around θ 0 , the overlaps of joint states are approximately equal to those of a Gaussian model with QFI = F �� � � ψ | e i ( u − v ) G/ √ n � � ψ � n − → e ( u − v )2 F/ 8 = � � � = � � ψ ⊗ n � ψ ⊗ n F/ 2 u � F/ 2 v θ 0+ u/ √ n θ 0+ v/ √ n � General LAN for mixed states & multi-dimensional models 2 2 J. Kahn and MG, Commun. Math. Phys. 2009

  6. Gaussian limit for qubits n identically prepared qubits � � ivσ x − uσ y � � � ψ := exp √ n | ↑ � � u v √ n , √ n Collective observables L x,y,z := � n i =1 σ ( i ) x,y,z Quantum Central Limit Theorem ( u = 0 , v = 0 ) z D L x → N � 0 , 1 � − √ 2 2 n √ n n D L y → N � 0 , 1 � − √ 2 2 n • x l.l.n. � � L y L x = 2 i 2 n , 2 n L z − − − → i 1 √ √ 2 n y

  7. Gaussian limit for qubits n identically prepared qubits � � ivσ x − uσ y � � � ψ := exp √ n | ↑ � � u v √ n , √ n Collective observables L x,y,z := � n i =1 σ ( i ) x,y,z Quantum Central Limit Theorem ( u � = 0 , v � = 0 ) z → N � √ D L x 2 u, 1 � − √ 2 2 n √ n n → N � √ D L y 2 v, 1 � − √ 2 2 n • x l.l.n. � � L y L x = 2 i 2 n , 2 n L z − − − → i 1 √ √ 2 n y

  8. Gaussian limit for qubits n identically prepared qubits � � ivσ x − uσ y � � � ψ := exp √ n | ↑ � � u v √ n , √ n Collective observables L x,y,z := � n i =1 σ ( i ) x,y,z Local asymptotic normality = q Gaussian on tangent space z L x 2 n − → Q √ √ n n L y 2 n − → P √ • x √ √ � � � ψ − → | 2 u, 2 v � � u v √ n , √ n y

  9. Optimal estimation using local asymptotic normality ρ θ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ - ˆ ρ θ - X n ∼ P ( M n , ρ θ ) M n θ n ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ρ θ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ n → ∞ - ˆ Φ θ - Y ∼ P ( H , Φ θ ) θ [L. Le Cam] H ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ Sequence of I.I.D. quantum statistical models Q n = { ρ ⊗ n : θ ∈ Θ } θ Q n converges (locally) to simpler Gaussian shift model Q Optimal measurement for limit Q can be pulled back to Q n

  10. Outline Quantum parameter estimation ◮ classical and quantum Fisher information ◮ local asymptotic normality for i.i.d. models Quantum Markov chains ◮ ergodic dynamics, output state ◮ CLT and LAN for time averages of output measurements ◮ quantum Fisher information and quantum LAN ◮ identifiability classes Quantum enhanced metrology ◮ atom maser ◮ dynamical phase transitions and Heisenberg scaling ◮ metastability

  11. Hidden Markov chain in an input-output setting Input Output t ij j i Y n +2 Y n +1 Y n X n Z n − 1 Z n − 2 Z n − 3 Evolution: scattering interaction between input and system: ( X n , Y n ) �→ ( X n +1 , Z n ) = F ( X n , Y n ) ◮ Input: i.i.d. random variables Y 1 , Y 2 , . . . ◮ System: Markov process X 1 , X 2 , . . . induced by the interaction ◮ Output: correlated random variables Z 1 , Z 2 , . . . (hidden Markov chain) Statistical Problem: estimate dynamics law F by observing the output 3 3 T. Petrie, Ann. of Math. Stat. (1969). P.J. Bickel, Y. Ritov, and T. Ryden Ann. Stat. (1998)

  12. Discrete Markov dynamics a.k.a. channels with memory System Input Output U θ | χ i | χ i | χ i Feedback control of cavity state in the atom maser [C. Sayrin et al , Nature 2011] Input-output dynamics: successive interactions with (memory) system via unitary U θ System identification problem 4 : estimate θ by measuring the output state ◮ which parameters can be identified ? ◮ How does the output QFI scale with "time" n ? ◮ How does this related to dynamical properties, e.g. ergodicity, spectral gap...? Methods: Bayesian/extended filter 5 , maximum likelihood, compressed sensing 6 , q.f.tomo 7 4 M.G., J. Kiukas, Commun. Math. Phys. 2015 5 H. Mabuchi Quant. Semiclass. Optics 1996; J. Gambetta and H. M. Wiseman Phys. Rev. A 2001 6 M. Cramer et al, Nat. Commun. 2010 7 Steffens et al, N. J. Phys. 2014

  13. Quantum Markov dynamics | χ i | χ i | χ i U C k ⊗ C k ⊗ C k ⊗ C k ⊗ ⊗ ⊗ C k C k C k ⊗ C D Input Output System Dynamics determined by isometry V : C D → C D ⊗ C k � V | ψ � := U | ψ ⊗ χ � = K i | ψ � ⊗ | i � i System-output state after n steps is of matrix product form 8 | Ψ( n ) � = U ( n ) | χ � ⊗ | ψ � ⊗ n = � K i n . . . K i 1 | χ � ⊗ | i n � ⊗ · · · ⊗ | i 1 � i 1 ,...,i n Reduced system evolution given by transition operator T : M ( C D ) → M ( C D ) Tr out ( | Ψ( n ) �� Ψ( n ) | ) = T n ( ρ in ) , ρ ( n ) = ρ in = | χ �� χ | k � K i ρK † T ( ρ ) = i i =1 8 M. Fannes, B. Nachtergale and R. Werner, 1992; D. Perez-Garcia, F. Verstraete, M. Wolf and I. Cirac, 2007

  14. Quantum Perron-Frobenius Theorem 9 Theorem (Quantum Perron-Frobenius Theorem) If T is an irreducible CP-TP map (no invariant subspaces) ◮ spectral radius r ( T ) = 1 is a non-degenerate eigenvalue of T ◮ unique, strictly positive stationary state: T ( ρ ss ) = ρ ss ◮ the eigenvalues on the unit circle form a group If T is primitive (irreducible and aperiodic) then r(S) ◮ | λ | < 1 for all remaining eigenvalues ◮ convergence to stationary state n →∞ T n ( σ ) = ρ ss lim Key observation: if T ǫ is a small perturbation of primitive T ⇒ dominant eigenvalue λ ǫ varies smoothly and determines the asymptotics 9 D. E. Evans and R. Hoegh-Krohn, J. London Math. Soc 1978; M. Sanz, et al, IEEE Trans. Inform. Th., 2010

  15. Quantum Markov chains: sequential output measurements A 3 A 2 A 1 | χ � | χ � | χ � U C k ⊗ C k ⊗ C k ⊗ C k ⊗ C k ⊗ C k ⊗ C k ⊗ C D Input Output System Observable A = � i a i | i �� i | measured on each unit − → outcomes A 1 , A 2 , . . . � n Statistic: time (empirical) average S n ( A ) = 1 i =1 A i n Moment generating function φ ( s ) := E � e snS n ( A ) � = Tr( T n s ( ρ in )) Deformed transition operator T s : M ( C D ) → M ( C D ) (CP, non-TP) � e sa i K i ρK ∗ T s : ρ �→ i i

  16. Central Limit Theorem for the measurement process Theorem (Central Limit) Let T be primitive. Then 1) time averages converge to stationary means S n ( A ) → E ss ( A ) 2) fluctuations are normal F n ( A ) := √ n ( S n ( A ) − E ss ( A )) L − n →∞ N (0 , V ( A )) − − − → with variance � E ss ( A 2 ) + 2 E ss ( A ⊗ (Id − T ) − 1 ( B )) , B := � χ | U ∗ ( 1 ⊗ A ) U | χ � V ( A ) = d 2 log λ s , λ s = dominant eigenvalue of T s ds 2 Remarks 1) similar CLT holds for time averages of multiple-outcomes functions f ( A 1 , . . . , A r ) 10 2) similar CLT holds for the total counts and integrated homodyne current in continuous-time 11 10 M. van Horssen and M.G., J. Math. Phys. 2015 11 C. Catana, L. Bouten, M.G., arXiv:1407.5131

Recommend


More recommend