structure of model for the apeis project
play

Structure of Model for the APEIS Project Yuzuru Matsuoka Kyoto - PowerPoint PPT Presentation

Structure of Model for the APEIS Project Yuzuru Matsuoka Kyoto University, Japan 1. Brief introduction of the AIM 2. Models used for APEIS Project 3. AIM/Emission, Ecosystem, Material and AIM/Trend APEIS Capacity Building Workshop 1


  1. Structure of Model for the APEIS Project Yuzuru Matsuoka Kyoto University, Japan 1. Brief introduction of the AIM 2. Models used for APEIS Project 3. AIM/Emission, Ecosystem, Material and AIM/Trend APEIS Capacity Building Workshop 1 October 24, 2002

  2. The Asia-Pacific Integrated Model • AIM is an abbreviation of Asia-Pacific Integrated Model. • It is one of Integrated Assessment Models ( IAM ), and a large-scale computer simulation model developed to promote the integrated assessment process in the Asia-Pacific region • Collaborated study by Japan, China, India , Korea, Thailand and Malaysia members. • The AIM project is started in July 1990, and began an international collaboration system from 1994. APEIS Capacity Building Workshop 2 October 24, 2002

  3. Integrated Assessment Model of Climate Change: The AIM Approach Population Technology model Economic model Mitigation AIM/Trend Lifestyle of Energy Climate model Land use model APEIS Change AIM/Emission, Japan team IPCC GHG emissions AIM/Material UNEP/GEO3 India team Eco-Asia Carbon cycle China team EMF19 Atmospheric Ocean chemistry uptake model National apply develop- Climatic change Korea team ment government AIM/Climate Climate change private Thailand team companies Adaptation Malaysia team Water resource Sea level of rise Human Climate health Change Ecosystem Agriculture AIM/Ecosystem APEIS Capacity Building Workshop 3 October 24, 2002

  4. Linkages of AIM models AIM/Climate Atmos- AIM/Emission phere Socio-Econ. & Land Ocean Emission Scenario Surface Water Land-use Resource Crop Socio-Econ. Productivity Factors Food Demand And Supply AIM/Ecosystem Adaptation APEIS Capacity Building Workshop 4 October 24, 2002

  5. AIM/Emission Bottom-up and Top-down The AIM/Emission has two types of models, i.e. Bottom-up • type energy models and Top-down type energy models. Bottom-up type energy models : Energy demand is • calculated by multiplying energy service and energy efficiency. Energy efficiency is calculated with the diffusion of new technologies, and energy prices. Within the model , recruit processes of energy technologies, choice and operation of energy devices are described in detail. APEIS Capacity Building Workshop 5 October 24, 2002

  6. Top-down and トップダウンの視野 Top-down view Bottom-up Energy system as a part of economic system 経済又は経済のエネルギーサブシステム ・ GDP=f(労働力、資本、エネルギー、その他 ・ GDP = f( labor 、 capital 、 energy 、 others ) ) Energy models →静的視点 ・ Population ・ price ・ investment ・ 人口、・価格、・投資 ・ Economic growth → Dynamic point of views ・ 成長効果 →動的視点 in AIM Family Price effect AEEI AEEI AEEI 価格効果 Income effect 収入効果 Investment 投資効果 ・ Structual change ・ Substitution ・構造的変化 ・代替効果 ・ Others ・技術的変化 ・その他 ・ Technological change Economic Activity 経済活動 CO CO CO CO End-use 2 排出 2 排出 エネルギーサービスに エネルギーサービスに エネルギー供給 最終消費 CO CO CO 2 2 排出 エネルギーサービスに Energy service Energy supply energy 対する需要 対する需要 エネルギー emission 対する需要 demand service エネルギー強度、燃料構成 Energy intensity, Energy mix Economic Economic Economic 経済活動 経済活動 経済活動 Activity A Activity B Activity C 部門 A 部門 B 部門 C エネルギー供給 エネルギ エネルギー消費 Energy end-use Energy end-use Energy end-use technology b technology b 技術 a ー消費 技術 c technology a ・投資費用 技術 ・ • Investment • Investment ・運転費用 ・ b • Operating cost • Operating cost ・効率 ・ • Efficiency • Efficiency Bottom-up view ・寿命等 ボトムアップの視野 • Lifetime • Lifetime APEIS Capacity Building Workshop 6 October 24, 2002

  7. AIM/Emission - Coupling of models - Socio-Economic Scenarios Population Resource Base Lifestyle GDP AIM/emission Regional / National Bottom-up Model SO 2 , NO x , End Use Food Social Industrial Technology Industrial Consumption SPM Energy Energy Process Change Pattern Production Emissio Efficiency Efficiency Change n Exploitation Resource Other Regional Air GDP GDP Base Technology Inputs Pollution Population Population Model Energy Resource Goods & Goods & Energy Service Service Energy Service Demand Supply Deman Price d Primary Social Energy Final Energy Final Supply Energy Efficiency Energy Biomass Goods and Change Demand Supply Energy Service Price Energy Demand Conversion End Use Technology Technology Efficiency Change Land Energy Input Conversion Cropland End Use Technology Technology Pasture Forest Biomass Farm Global Energy-Economic Model Other Land Global Land GHGs Emissions Equilibrium Model AIM/climate Model APEIS Capacity Building Workshop 7 October 24, 2002

  8. CO 2 Emission Scenarios A1FI (A1C) A2 A1FI (A1G) A1B B2 A1T B1 APEIS Capacity Building Workshop 8 October 24, 2002

  9. Linkages of AIM models AIM/Climate Atmos- AIM/Emission phere Socio-Econ. & Land Ocean Emission Scenario Surface Water Land-use Resource Crop Socio-Econ. Productivity Factors Food Demand And Supply AIM/Ecosystem Adaptation APEIS Capacity Building Workshop 9 October 24, 2002

  10. AIM/Climate AIM/emission Natural change convection and Balance and Chemical model transport of of GHGs aerosol, SO 2 and Carbon cycle model CH 4 model NOx N 2 O model CFCs model Climate model Radiative forcing, Energy balance Ocean model Upwelling-Diffusion ocean model Sea level rise model Ice melt Thermal Global temperature change Glaciers expansion Greenland GCM,RegCM Antarctica Spatial interpolation with GCM experiments Regional temperature change Sea level rise APEIS Capacity Building Workshop 10 October 24, 2002

  11. Temperature change between 1990 and 2100 Simulated 7 GCMs are GFDL R15a, CSIRO Mk2, HadCM3, HadCM2, ECHAM4/OPYC, CSM 1.0 and DOE PCM ← 95% 5.1 C Fitted probability and frequency of occurence 1 Geometric mean= 2.88 C S.D. of logarithm= 0.346 ← 50% 2.88 C All 3.1±1.1 A1FI 4.5±0.9 0.6 0.5 A2 3.8±0.8 0.4 A1B 2.9±0.6 ← 5% 1.63 C 0.2 B2 2.7±0.6 0 A1T 2.5±0.6 1 ~ 1.5 1.5 ~ 2 2 ~ 2.5 2.5 ~ 3 B1 2.0±0.5 3 ~ 3.5 3.5 ~ 4 4 ~ 4.5 4.5 ~ 5 5 ~ 5.5 0 5.5 ~ 6 1 2 3 4 5 6 Temperature change (C) APEIS Capacity Building Workshop 11 October 24, 2002

  12. Climate change in Asian-Pacific countries from 1990 to 2100, increase in DJF Precipitation change Temperature change 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 India 3.1±1.1 ℃ 0 0 India 3.7±19.5% <1.0 China 3.9±1.4 ℃ 25 ~ 30 1.0-1.5 1.5-2.0 2.0-2.5 10 ~ 15 2.5-3.0 China 7.2±9.4% 3.0-3.5 Japan 3.7±1.3 ℃ 3.5-4.0 4.0-4.5 -5 ~ 0 4.5-5.0 5.0-5.5 Japan 4.6±9.9% Global 3.1±1.1 ℃ 5.5-6.0 -20 ~ -15 6.0-6.5 6.5-7.0 > 7.0 < -30 APEIS Capacity Building Workshop 12 October 24, 2002

  13. Linkages of AIM models AIM/Climate Atmos- AIM/Emission phere Socio-Econ. & Land Ocean Emission Scenario Surface Water Land-use Resource Crop Socio-Econ. Productivity Factors Food Demand And Supply AIM/Ecosystem Adaptation APEIS Capacity Building Workshop 13 October 24, 2002

  14. Outline of the Crop Productivity Model AIM/climate, Surface water runoff model Crop productivity model Temperature, Precipitation, PET, PAR, Soil characteristics Crop Parameters Threshold Temp. Estimation of Growing Period Normal Growing Period Photosynthesis Path Biomass Production Rate Normal Leaf Area Index Net Biomass Production Normal Harvest Index Soil constraints Soil data Potential Productivity APEIS Capacity Building Workshop 14 October 24, 2002

  15. Wheat productivity change in some countries from 1990 to 2100 Without CO 2 fertilization With CO 2 fertilization 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 C a 0 Canada 29.7±6.9% n a 50 ~ d a 40 ~ 50 ~ ~ 0 0 30 ~ 40 9 5 5 I 0 n . ~ ~ 0 20 ~ 30 6 d 0 4 India -53.2±19.9% i ± 4 ~ ~ 0 a 10 ~ 20 1 3 0 9 3 ~ ~ 0 - . 0 ~ 10 3 0 2 8 4 2 % ~ ~ 0 ~ 0 1 . 3 0 1 ~ ~ C ± 0 ~ -10 1 0 ~ ~ -10 h China -5.9±10.6% 6 0 i 0 ~ -20 n 1 . 1 1 - a - 0 % ~ ~ ~ -30 2 -20 0 3 - 2 ~ ~ 0 ~ -40 3 - -30 0 3 . 2 3 - ~ ~ 0 ± - -40 ~ -50 J 4 1 0 a - 4 ~ ~ 0 Japan -6.5±1.5% p 2 -50 ~ -60 - 5 . 0 a 5 - 5 0 n % ~ ~ ~ -70 - 6 -60 0 - 6 0 2 ~ ~ - 7 -70 4 0 - . 7 3 ~ ~ - -100 ± 0 0 4 1 . 4 - % APEIS Capacity Building Workshop 15 October 24, 2002

  16. Wheat productivity change in India from 1990 to 2100, with CO 2 fertilization 0.40 0.30 0.20 0.10 750ppm -29±7.8% 0.00 -70 ~ -65 650ppm -26±7.0% -65 ~ -60 -60 ~ -55 -55 ~ -50 -50 ~ -45 550ppm -20±6.8% -45 ~ -40 -40 ~ -35 -35 ~ -30 -30 ~ -25 450ppm -14±5.8% -25 ~ -20 -20 ~ -15 -15 ~ -10 -10 ~ -5 SRES -34±16% -5 ~ 0 0 ~ 5 5 ~ 10 APEIS Capacity Building Workshop 16 October 24, 2002

Recommend


More recommend