Status of strip scintillator ECAL and HCAL Tohru Takeshita � (Shinshu) � HCAL-Scintillator-layer model for CALICE absorber plate TT 11Aug05 strip scintillator � T-Layer 4cmx4cmx2mm scECAL progress � MPPC R/O with WLSF strip HCAL � X-Layer 1cmx20cmx2mm more on HCAL MPPC R/O with WLSF Z-Layer 1cmx20cmx2mm MPPC R/O with WLSF particles 1
PFA requirements ❖ Jet Energy resolution ~ 3% ❖ fine segmentation in 3D (longitudinal and lateral) ❖ for both ECAL (5mm) and HAL(3cm) : current opt. Track/ECAL/HCAL ❖ strip scintillator technology can achieve high granularity ❖ with perpendicular setup for both ECAL and HCAL ❖ moreover it is able reduce the number of R/O channels ~1/10 ❖ HCAL strip would be 1cm width which is compatible (S)DHCAL ❖ with analog read out capability ~AHCAL 2 T.Takeshita LCWS15@Whistler
strip for scECAL る。また、シンチレーターは切り出してきたシンチレーター材のロットによっ のシンチレーター て個体差があることが知られており、このばらつきの大きさについては調査が #p.e. MPV 図 くさび形のシンチレーター 厚さ 厚さ 厚さが 図 になると、発光量と反射回数の増減によって光電子数は厚さ のときの約 割になると予想される 式 。さらに、開口部分の寄与を考え る。開口部分とは、 を設置する面の反射材がない部分である。 基準設計と下面読み出し 厚さ MPPCからの距離 MPV 必要である。 MPPCからの距離 #p.e. ❖ 5mmx45mm strips direct MPPC readout end side R/O Scintillator strip ❖ attached at the end side or bottom ❖ enough light yield MPPC PCB ❖ good uniformity except near sensor ❖ scintillation light transmission simulation bottom R/O 2mm thick baseline and bottom 2mm thick Tsuzuki Simulation result 50 light yield Ieki Baseline design 45 Simple bottom 40 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 40 45 [mm] distance from a MPPC 3 T.Takeshita LCWS15@Whistler
strip for HCAL ❖ 18cm long strip with WLSF read out 18cm 2 18cm 2 1cm wide 3mm thick ❖ perpendicular set up ❖ combination with tiles will remove ghost ❖ photon yield ~30p.e. good uniformity ❖ 18 cm long strip with ❖ WLSF read out β rays ❖ good uniformity MIP 1p.e. ❖ by beta rays at lab. 2p.e. Itoh ❖ 1600 pix MPPC 25um with camac ADC 4 T.Takeshita LCWS15@Whistler
strip HCAL ❖ fine segmented HCAL looks better for tracking in hadron interaction ❖ scintillator HCAL is better for EM shower measurement ❖ we do “cherry picking” 1x1cm 2 3x3cm 2 calice AHCAL � calice SDHCAL � calice DCAL � 25GeV π - 50GeV π - 16GeV π - 5 T.Takeshita LCWS15@Whistler
photo sensor for scCAL ❖ ECAL need very large dynamic range for number of photons ❖ MPPC has limited number of pixels which has saturation phenomena with rapid recovery E CMS =500GeV energy / sc-strip (5x45mm2) number of pixels in a MPPC should be 10k, when 7p.e./MIP 1700 MIP dE /strip (GeV) 6 T.Takeshita LCWS15@Whistler
10k pixel MPPC ❖ 10um pitch MPPC in 1mmx1mm 10um ❖ =10k pixel MPPC ❖ response with scintillator is measured ❖ reached ~ 10000 p.e. ❖ signal is significantly smaller pixel size is small, small C ❖ need careful signal amp/ADC ❖ current SPIROC2 facing difficulty 7 T.Takeshita LCWS15@Whistler
γ γ strip problem t s ❖ ghost o h g ❖ strip calorimeters suffer from ghost problem for both ECAL and HCAL ❖ ghosts appear when multi-particle passing near by ❖ ghost can be avoided by introducing tile layers ❖ size of the tile depends on the strip width 8 T.Takeshita LCWS15@Whistler
cyan : heavy ion green : proton blue : pi+- red : electrons black: total scintillator problems in HCAL ❖ neutron rich events ❖ can be removed by time and isolation cuts ❖ low energy / slow protons which deposit huge energy in a strip/tile 5GeV π ❖ significant contribution to fluctuation MC with Birks law ❖ must be removed, however this makes ❖ total energy smaller ❖ under study longitudinal layer # 9 T.Takeshita LCWS15@Whistler
strip scECAL status ❖ integrated layers are being tested ❖ with scintillator strips and the read out electronics ❖ with 10k pixel MPPC of 1x1mm 2 2x18x18cm 2 18x18cm 2 144 strips 2x144ch read out layer scintillator layer read out layer 10 T.Takeshita LCWS15@Whistler
Tungsten stack strip scECAL test at CERN ❖ together with AHCAL in absorbers ❖ 2014 at PS T20 with steel and 2015 at SPS H2/6 with tungsten ❖ 3 ECAL layers & 12 AHCAL layers 11 T.Takeshita LCWS15@Whistler
strip Tungsten stacks Transverse EBU already tested HBUs EBUs strip strip 10k pix Bottom readout end readout end readout 10k pix 1600 pix strip scECAL unit : EBU Longitudinal EBU Transverse EBU 12 T.Takeshita LCWS15@Whistler
scECAL layers ❖ online hit maps at CERN/SPS ❖ for muon calibration ❖ layer-1 is a bit noisy due to low thresholds 144strips/layer ❖ further analysis is on going a good muon event 13 T.Takeshita LCWS15@Whistler
strip scECAL performance ❖ hit information from ❖ second and third scECAL layers are combined ❖ to have matching hits ❖ problematic strips degrade hit map ❖ importance of tuning ❖ before the experiments muon 50GeV 14 T.Takeshita LCWS15@Whistler
strip HCAL prototype ❖ four layers have be constructed 18cm ❖ stuck together at the beam 18cm ❖ read out by EASIROC module ❖ contains SPIROC, however, 18cm independent from others 1cm 16channels 15 T.Takeshita LCWS15@Whistler
図 た。 図 の回路図の概略 。 に配置する必要があった。特に、高電圧のかかる の信号線は密集しがちであ るが、十分な間隔 であった。 また、ファイバートラッカー用に特化するのではなく、 を用いての測定に 広く対応できることも念頭において作成したため、汎用性の高いモジュールとなっ 程度 で配置しなければならないため、慎重な設計が必要 の測定で必要な機能はほぼ全て内蔵されており、持ち運びも容易である。 モジュールの作成はジー・エヌ・ディー社に依頼し、設計にも協力して頂いた。以 年 月 日火曜日 温度計 に完成したモジュールの概観を示す。 、図 下の図 の内部基板。 strip HCAL read out Channel 31 ❖ EASIROC NIM module Channel 0 Hold 64ch. Ctest Low Gain Read 0.1pF - 1.5pF in_calib Multiplexed Low Gain 3pF Slow Shaper Output PreAmp. + 1.5pF 25 - 175 ns 3pF Hold ❖ ASIC:easiroc by OMEGA High Gain Read IN 0.1pF - 1.5pF Multiplexed Ch0 32ch. High Gain Slow Shaper Output PreAmp. + 15pF 25 - 175 ns c15p RS or Discri ON Bipolar Fast ❖ external trigger mode Channel0_trigger Latch Shaper 8-bit DAC V_th RS 0-4.5V 15 ns Trigger Discri Read Multiplexed Output ❖ bias voltage with DC/DC LG Slow Shaper 10-bit Variable Low Variable Shaping OR32 DAC Gain PA (4 bits) Time (3 bits) Ch31_trig HG Slow Shaper Variable High Variable Shaping Gain PA (4 bits) Time (3 bits) Common to the 32 channels ❖ external ADC Figure 4 – One channel description EASIROC x2 ❖ temperature monitor MPPC64ch LVDS 出力 ❖ Ethernet I/O 計装用 ADC ADC FPGA ASIC 保護回路 ❖ DAQ & parameter setting Ethernet 内蔵バイアス電源 (0~90V) by SiTCP (FPGA 編集 ) 16 T.Takeshita LCWS15@Whistler
strip HCAL prototype pedestal ❖ uniformity by muons ADC dist. ❖ positions were determined by the next layer both layers are required to be single hits mip by muons ❖ will be calibrated with photon-yield photo-sensor photo-sensor <non uniformity> ~13% dead channel distance from MPPC (mm) 17 T.Takeshita LCWS15@Whistler
HCAL improvement ❖ active fine granular absorber for PFA ❖ by Cherenkov detection ❖ with very thin photo-sensor ~ MPPC ❖ heavy and transparent absorber ❖ currently testing the lead-glass ❖ X0~1.7cm, t ~ 5.5 g/cm3 ❖ refractive index n=1.8 18 T.Takeshita LCWS15@Whistler
Recommend
More recommend