scintillator calorimeter for lc
play

Scintillator Calorimeter for LC Tohru Takeshita Shinshu U. for - PowerPoint PPT Presentation

Scintillator Calorimeter for LC Tohru Takeshita Shinshu U. for GLDCAL & scecal+AHCAL/CALICE TT CLIC-WS 09 @ CERN PFA calorimeter ECAL & HCAL current and future study ILC ILC to CLIC HE, BG & BX Shinshu University Jet physics


  1. Scintillator Calorimeter for LC Tohru Takeshita Shinshu U. for GLDCAL & scecal+AHCAL/CALICE TT CLIC-WS 09 @ CERN PFA calorimeter ECAL & HCAL current and future study ILC ILC to CLIC HE, BG & BX Shinshu University

  2. Jet physics at HE e TT CLIC-WS 09 @ CERN severer on CLIC e H Z • High Energy e+ e- collision in LC (~TeV) q q • relevant physics final states q • W/Z/H/top which emerges as jets q • need to identify its origin e+e- > ZH at 500GeV • required 3%~(rms jet)/Ejet qqqq • separate W from Z • guiding principle : PFA • PFA requires specifically optimal detector

  3. TT CLIC-WS 09 @ CERN e+e->ZH 250GeV hadron hadron neutral neutral photon photon charged particle energy (GeV) charged Particle Flow Algorithm • Charged particle : pion,Kaon: Tracker :65% of Ejet • neutral : photon: ECAL :25% of Ejet 0.001@10GeV 0.05@10GeV • neutral: Ko,n: HCAL: 10% of Ejet 0.2@10GeV • jet energy resolution : HCAL error propagation momentum / energy resolution ID 3000 Entries 37960 1 Mean 3.621 10 4 RMS 6.015 UDFLW 0.000 HCAL 0.1 10 3 resolution ECAL 0.01 10 2 Tracker 0.001 10 0.0001 1 1 10 100 1000 0 20 40 60 80 100 momentum (GeV)

  4. PFA requirements ECAL smaller on CLIC TT CLIC-WS 09 @ CERN Tracker HCAL 4D for CLIC with timestamping • need to separate charged and neutrals in 1cm x 1cm segmentation in E & H CALs calorimeter • cluster overlapping in 3D. • tracking in CAL • fine segmentation ~1x1 cm 2 • longitudinal and lateral • photon separation in ECAL • neutral hadron isolation

  5. granularity M. Thomson 3cm TT CLIC-WS 09 @ CERN smaller on CLIC pi-zero 50 GLD 20 10  ECAL < 1x1cm 2 4GeV dx(cm) 1cm 1cm 20GeV r 0

  6. granularity M. Thomson jet energy resolution TT CLIC-WS 09 @ CERN no leak on CLIC Ecm=500GeV  HCAL ~ 3cm x 3cm

  7. TT CLIC-WS 09 @ CERN How to fulfill Wave length shifting fiber GLD-ECAL-Scintillator-layer model TT 1/April/06 absorber plate  current implementation by scintillator with 1cmx4cmx2mm X-Layer  ECAL : strips : extruded MPC R/O with WLSF  1cm x 4.5 cm x 0.3 cm 1cmx4cmx2mm  X-Y strips effective 1cm 2 Z-Layer  HCAL : tile : molded MPPC R/O with WLSF particles  3cm x 3cm x 0.5cm

  8. scintillator strip ECAL 1cm 1cm 4.5cm TT CLIC-WS 09 @ CERN WLSF  extruded by KNU MPPC  MPPC read out TT Oct 07 EM-Scintillator-layer model Cross section MPPC Tungsten ASIC calib. WLSF scintillator 4cm MPPC Flex-sheet Tungsten ASIC 1cm MPPC Tungsten particle

  9. photo-sensor 123456789......................40 good time resolution < 1ns TT CLIC-WS 09 @ CERN more pix on CLIC • new type of photon sensor : Geiger Mode APD # of p. e. 1mm = # of pix 1mm p+ MPPC pict n++ a pixel 5~6 high gain ~ 10 p+ blue sensitive low Voltage ~<100V p-epi 2 small ~1mm n++ insensitive to mag.

  10. prototype module MIP ADC TT CLIC-WS 09 @ CERN  scintillator strip ECAL  18 x 18 x 26 cm 3  tested at FNAL MT6 2008+09  2160 ch.

  11. CALICE preliminary saturation effect of MPPC is corrected for each strip TT CLIC-WS 09 @ CERN results of prototype scintillator strip ECAL  linearity and resolution Deposit energy in ECAL (MIP) 20 const. = 1.44 0.02 ( combined ) Slope = 145.28 0.01 ( combined ) ! ± 5000 18 stat. = 15.15 0.03 ! Slope = 147.83 0.01 ( center ) ± const. = 1.59 0.03 ( center ) ! 16 Slope = 142.37 0.01 ( uniform ) ± stat. = 14.80 0.04 ! 4000 / E (%) 14 const. = 1.21 0.04 ( uniform ) ! 12 stat. = 15.67 0.05 ! 3000 10 8 2000 E ! 6 4 1000 2 0 0 0 0.5 1 0 10 20 30 -1/2 -1/2 Beam momentum ( GeV/c ) 1/ P ( GeV /c ) beam

  12. TT CLIC-WS 09 @ CERN r 0 reconstruction  target in pion beam to make r 0 Calice Preliminary  find two isolated clusters π 0 peak  calculate its mass  with different E r

  13. in situ calibration in ECAL TT CLIC-WS 09 @ CERN  use hadron tracks  simulation study  100 hits / strip  100 pb -1 at Z pole ECAL HCAL dE/dx /strip no selection

  14. in situ calibration in ECAL TT CLIC-WS 09 @ CERN  use hadron tracks  simulation study  100 hits / strip  100 pb -1 at Z pole ECAL HCAL dE/dx /strip no selection

  15. monitoring system ADC ADC LED 1p.e. TT CLIC-WS 09 @ CERN  MPPC has auto-gain calibration capability  to monitor 1 p.e. w/o LED  LED though clear fiber with notches

  16. non-uniformity effect 5cm x(cm) TT CLIC-WS 09 @ CERN constant term in energy resolution  non uniformity of scintillator causes scintillator 0.2 non-uniformity-simulation 1 0.5@5cm 0.8 0.15 0.5 0.6 data resolution non-uniformity 0.5 B 0.1 non uniformity 0.7 @5cm assumed e -ax 0.4 0.7 extruded (data) 1.0=uniform 0.2 uniform sim. 0.05 0 0 1 2 measured 3 4 5 A 0 0 0.2 0.4 0.6 0.8 1 1.2 1/sqrt(E)

  17. TT CLIC-WS 09 @ CERN good uniformity severer on CLIC no precise alignment required jet energy resolution Further segmentation ECAL • 5mm width is favored by current PFA study • WLSF-less configuration • which looks promising 5mm wide strip bench test 14 the number of p.e. 0.0 mm from center 12 1.5 mm from center 10 8 6 4 2 M. Thomson 0 0 5 10 15 20 25 30 35 40 45 distance from MPPC (mm)

  18. scintillator HCAL TT CLIC-WS 09 @ CERN  CALICE AHCAL  scintillator tiles  3cm x 3cm x 0.5cm  with SiPM

  19. scintillator HCAL TT CLIC-WS 09 @ CERN  CALICE AHCAL  scintillator tiles  3cm x 3cm x 0.5cm  with SiPM

  20. results of AHCAL pion energy measurement TT CLIC-WS 09 @ CERN

  21. results of AHCAL cont. energy resolution (AHCAL+TMC) sum of E-density 49%/sqrt(E) no density correction E-density weight TT CLIC-WS 09 @ CERN

  22. next gen. prototype in a layer timing on CLIC TT CLIC-WS 09 @ CERN  combined electronics  new SPIROC  power pulsing

  23. next gen. scintillator severer on CLIC μ TT CLIC-WS 09 @ CERN with dimple  tile  with WLSF  w/o WLSF 40 40 The number of p.e. The numbe of p.e.  strip 35 35 30 30  without WLSF 25 25 20 20 15 15 10 10 5 5 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.2 0.4 0.6 0.8 1 1.2 m Distance from center of fiber( m) Distance btw MPPC and fiber(mm)

  24. TT CLIC-WS 09 @ CERN ク 緑 ニュ ート ロンのヒ ッ ト シンチでト ラ ッ から 0 離れたヒ ッ ト はニュ 0 ロン散乱に起因する。 scintillator HCAL without Birk’s low 0 ート 1 0 1 0 1 0 0 1 0 0 0 2 0 0 4 0 6 0 1 .1 8 LHEP Pb/Sci  problem with neutrons a pion interaction in HCAL layers 4 10 pi- 1000 4GeV Z neutron 100 time (ns) time-cut for pi-4GeV Pb8+sci2mm 200 10 150 20% E(scinti) (MeV) total energy measured (MeV) 100 1 charged total hits 50 0.1 0 20 40 60 80 100 no cut 0 Z layer 1 10 100 1000 time cut (ns)

  25. summary & for CLIC severer on CLIC but time resolution will help TT CLIC-WS 09 @ CERN with time stamping capability 4D detector  investigating scintillator calorimeters  with PFA idea (segmentation) for LC  current R/O with WLSF for ECAL&HCAL  basic performances look good enough  both linearity and resolution  combined layer (electronics +active)  higher E collisions require finer segmentation  neutron contribution should be in mind

  26. ECAL for ILC TT CLIC-WS 09 @ CERN • Tungsten : small Moliere radius ~1cm • need less gap between layers • read out elex. within layers • Amp, Shaper +15 bit ADC 20 cm • power pulsing : 1/1000 ~ n W/ch • sensor : Tungsten Alveolus Carbone Fiber • Scintillator strip Detector slab

  27. MPPC saturation PMT out = p1Ntrue MPPC out = N fired N p0 =2424 TT CLIC-WS 09 @ CERN  saturation curve measured  by UV laser with scintillator + WLSF N fired = N p 0 (1 − exp( − p 1 Ntrue ))  a MPPC & a PMT N p 0

  28. PFA W/Z separation TT CLIC-WS 09 @ CERN M. Thomson

  29. TT CLIC-WS 09 @ CERN ECAL discussion • Dynamic range : electronics & Photon sensor MPPC non linearity e+e- > e+e- at 500GeV w LED PMT at least 15bits ADC MPPC 1600 pix w = 50 ns Results 24 ns 16 ns 8 ns 1600 dE / cell (MIP) JCBrient

Recommend


More recommend