probability
play

Probability 3.1 Discrete Random Variables Basics Anna Karlin Most - PowerPoint PPT Presentation

Anonymous questions Probability 3.1 Discrete Random Variables Basics Anna Karlin Most slides by Alex Tsun Agenda Intro to Discrete Random Variables Probability Mass Functions Cumulative Distribution function Expectation


  1. Anonymous questions Probability 3.1 Discrete Random Variables Basics Anna Karlin Most slides by Alex Tsun

  2. Agenda ● Intro to Discrete Random Variables ● Probability Mass Functions ● Cumulative Distribution function ● Expectation

  3. Flipping two coins

  4. Random Variable r X w io.ir rx

  5. subsets of 3 balls unordered I 20 balls numbered 1..20 Pcwf ● Draw a subset of 3 uniformly at random. ● Let X = maximum of the numbers on the 3 balls. 7 X 2,977 3 Xiao 15 X 3,844 3,415 120 Isupportgxf 11 1 r 203 a 20 b HTT d F

  6. Random Variable

  7. Identify those RVs drv 91,2 in a b drr Loir c drv 42,3 d Cop Crv Whichhas Range Which cont 42,3 a a b b d

  8. Random Picture

  9. Flipping two coins D k X wlXlw K

  10. Flipping two coins

  11. Flipping two coins O

  12. Probability Mass Function (PMF) k3 w Xlw P

  13. Probability Mass Function (PMF) i

  14. 20 balls numbered 1..20 ● Draw a subset of 3 uniformly at random. ● Let X = maximum of the numbers on the 3 balls.

  15. Probability Mass Function (PMF) PIX 4 3 P Ew X w

  16. 20 balls numbered 1..20 ● Draw a subset of 3 uniformly at random. ● Let X = maximum of the numbers on the 3 balls. ● Pr (X = 20) a Kaka ● Pr (X = 18) D X sof sewlmaxiiiihmsaaog.DK c Ma d sq K pcx ao k ao

  17. k esr.ro <latexit sha1_base64="sRHOyOvZfuCwr5D5z+nUz+WLjz4=">AB7nicbVDLSgNBEOz1GeMr6tHLYBDiJexGQY9BQTxGMA9IljA7mU2GzM4uM71iCPkILx4U8er3ePNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm7mt/PbO7t5+4eCwYeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMY3kz95iPXRsTqAUcJ9yPaVyIUjKVmrfdVunpjHQLRbfszkCWiZeRImSodQtfnV7M0ogrZJIa0/bcBP0x1SiY5JN8JzU8oWxI+7xtqaIRN/54du6EnFqlR8JY21JIZurviTGNjBlFge2MKA7MojcV/PaKYZX/lioJEWu2HxRmEqCMZn+TnpCc4ZyZAlWthbCRtQTRnahPI2BG/x5WXSqJS983Ll/qJYvc7iyMExnEAJPLiEKtxBDerAYAjP8ApvTuK8O/Ox7x1xclmjuAPnM8f9lKOqg=</latexit> <latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AB6HicbVDLTgJBEOzF+IL9ehlIjHxRHbRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvpFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZsjycwCmcgwdXUIU7qEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit> <latexit sha1_base64="c4X+es9QB862+1Tfu6CmKcTO2yw=">AB/HicbVBNS8NAEN3Ur1q/oj16WSxCeylJFfQiFAXxWMG2gTaEzXbTLt1swu5GkL9K148KOLVH+LNf+O2zUFbHw83pthZp4fMyqVZX0bhbX1jc2t4nZpZ3dv/8A8POrIKBGYtHEIuH4SBJGOWkrqhxYkFQ6DPS9c3M7/7SISkEX9QaUzcEA05DShGSkueWb71nOqkBq9gq+rAPiNwUvPMilW35oCrxM5JBeRoeZXfxDhJCRcYak7NlWrNwMCUxI9NSP5EkRniMhqSnKUchkW42P34KT7UygEkdHEF5+rviQyFUqahrztDpEZy2ZuJ/3m9RAWXbkZ5nCjC8WJRkDCoIjhLAg6oIFixVBOEBdW3QjxCAmGl8yrpEOzl1dJp1G3z+qN+/NK8zqPowiOwQmoAhtcgCa4Ay3QBhik4Bm8gjfjyXgx3o2PRWvByGfK4A+Mzx83bZKO</latexit> <latexit sha1_base64="v7SPDaFpFd5Ee6fK5tkbtZs9vpE=">AB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2k3bpZhN2N2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHsHM0nQj+hQ8pAzaqzU7pCeQPLUL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m587JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZIalGyxKEwFMTGZ/U4GXCEzYmIJZYrbWwkbUWZsQmVbAje8surpFWrehfV2v1lpX6Tx1GEziFc/DgCupwBw1oAoMxPMrvDmJ8+K8Ox+L1oKTzxzDHzifP3objwE=</latexit> P x k 3 k p f otherwise 0 Cumulative distribution function(CDF) The cumulative distribution function (CDF) of a random variable specifies for each possible real number , F X ( x ) x the probability that , that is X ≤ x F X ( x ) = P ( X ≤ x ) x 9 as

  18. Homeworks of 3 students returned randomly EE ta PxH ● Each permutation equally likely I k 3 ● X: # people who get their own homework 6 Prob Outcome w X(w) 1/6 1 2 3 a 3 D 1/6 1 3 2 1 pmf 1/6 2 1 3 D 1 se CDF 1/6 2 3 1 0 1/6 3 1 2 0 ya O 1/6 3 2 1 1 43 Ko x f L L p s prexex

  19. Probability Alex Tsun Joshua Fan

  20. Flipping two coins I Io Pratt 2 pcx 2 F O Prato X 2 Ly I I I O tyt expectation or expected value Put txt HTT P TT FIX Htt PLAID tX t th Mw tt t.tftttqt2 o

  21. Expectation

  22. Homeworks of 3 students returned randomly fo.is ● Each permutation equally likely ● X: # people who get their own homework PxXrPHE gkx ● What is E(X)? Px9 3 PCX Dt3PCX tl O.pfX o Prob Outcome w X(w) X 3 to l Iz 1/6 1 2 3 3 t 0 T t 1/6 1 3 2 1 I 1/6 2 1 3 1 1/6 2 3 1 0 1/6 3 1 2 0 1/6 3 2 1 1 ICX nXHPlw X 312 P 312 X 231 P 231 tX 321 P 321 t X 2B P 2B X 123 P123 X 132 P 132 3 Lg

  23. 6 I 6 ok Ey A woo Flip a biased coin until get heads (flips independent) 3 r It TITTY valuesyx With probability p of coming up heads Keep flipping until the first Heads observed. Let X be the number of flips until done. 1 ● Pr(X = 1) p a pk ● Pr(X = 2) 4 p p CtpY'p ftp b ● Pr(X = k) m

  24. ws r ftp.wtp Flip a biased coin until get heads (flips independent) zto With probability p of coming up heads Keep flipping until the first Heads observed. Let X be the number of flips until done. What is E(X)? p Eik Pretty F X EEK p extra t.E.xi.IT EyEnia Fxr

Recommend


More recommend