parameter identification and state estimation for linear
play

Parameter identification and state estimation for linear parabolic - PowerPoint PPT Presentation

Parameter identification and state estimation for linear parabolic equations Sergiy Zhuk IBM Research - Ireland Joint work with J.Frank (Utrecht University), I.Herlin (INRIA), R.Shorten (IBM) and S.McKenna (IBM) Stochastic Modelling of


  1. Parameter identification and state estimation for linear parabolic equations Sergiy Zhuk IBM Research - Ireland Joint work with J.Frank (Utrecht University), I.Herlin (INRIA), R.Shorten (IBM) and S.McKenna (IBM) Stochastic Modelling of Multiscale Systems NDNS+ workshop, Eindhoven Multiscale Institute December 5, 2013

  2. Outline Minimax projection method Projection coefficients as a solution of DAE Bounding set for the projection error Ellipsoid containing the projection coefficients State estimation for a linear transport equation Parameter identification for linear Darcy equation 1 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  3. Problem statement Assume a > 0 and I ( · , t ) ∈ H 1 0 (Ω) satisfies for almost all t ∈ (0 , T ) the following equation: ∂ t I + M · ∇ I − a ∆ I = f , I ( x , 0) = f 0 ( x ) , where • x ∈ Ω ⊂ R n , n ≥ 2, Ω is an open bounded convex set; • M ( x , t ) = ( M 1 ( x , t ) . . . M n ( x , t )) ′ with M i ∈ L ∞ (0 , T , H 1 0 (Ω)) for all i = 1 , . . . , n ; • f ∈ L 2 (0 , T , L 2 (Ω)) and f 0 ∈ H 2 (Ω) ∩ H 1 0 (Ω). 2 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  4. Galerkin projection We expand the solution I into the following series: � I ( x , t ) = a i ( t ) ϕ i ( x ) , a i ( t ) := � I ( · , t ) , ϕ i � L 2 (Ω) , (1) i ∈ N where { ϕ k } k ∈ N is the orthonormal set of eigenfunctions of − ∆: ϕ k ∈ C ∞ (Ω) ∩ H 1 − ∆ ϕ k = λ k ϕ k , 0 (Ω) , ϕ k = 0 on ∂ Ω . 3 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  5. Galerkin projection We expand the solution I into the following series: � I ( x , t ) = a i ( t ) ϕ i ( x ) , a i ( t ) := � I ( · , t ) , ϕ i � L 2 (Ω) , (1) i ∈ N where { ϕ k } k ∈ N is the orthonormal set of eigenfunctions of − ∆: ϕ k ∈ C ∞ (Ω) ∩ H 1 − ∆ ϕ k = λ k ϕ k , 0 (Ω) , ϕ k = 0 on ∂ Ω . Define projection operator: P N I ( · , t ) = a ( t ) := ( a 1 ( t ) . . . a N ( t )) ′ , and reconstruction operator: N � P + N a ( t ) = a i ( t ) ϕ i i =1 3 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  6. Galerkin projection We expand the solution I into the following series: � I ( x , t ) = a i ( t ) ϕ i ( x ) , a i ( t ) := � I ( · , t ) , ϕ i � L 2 (Ω) , (1) i ∈ N where { ϕ k } k ∈ N is the orthonormal set of eigenfunctions of − ∆: ϕ k ∈ C ∞ (Ω) ∩ H 1 − ∆ ϕ k = λ k ϕ k , 0 (Ω) , ϕ k = 0 on ∂ Ω . Define projection operator: P N I ( · , t ) = a ( t ) := ( a 1 ( t ) . . . a N ( t )) ′ , and reconstruction operator: N � P + N a ( t ) = a i ( t ) ϕ i i =1 and the vector of the exact projection coefficients: a true := P N I . N 3 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  7. DAE for the projection coefficents Define a differential operator A ϕ = M · ∇ ϕ − a ∆ ϕ and a commutation error: e ( x , t ) := A P + N P N I ( x , t ) − P + N P N AI ( x , t ) . (2) 4 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  8. DAE for the projection coefficents Define a differential operator A ϕ = M · ∇ ϕ − a ∆ ϕ and a commutation error: e ( x , t ) := A P + N P N I ( x , t ) − P + N P N AI ( x , t ) . (2) Since a true ( t ) = P N I ( · , t ) it follows that a true solves: N N ∂ t P + N a = P + N P N ∂ t I = − A P + N a + e + P + N P N f . (3) 4 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  9. DAE for the projection coefficents Define a differential operator A ϕ = M · ∇ ϕ − a ∆ ϕ and a commutation error: e ( x , t ) := A P + N P N I ( x , t ) − P + N P N AI ( x , t ) . (2) Since a true ( t ) = P N I ( · , t ) it follows that a true solves: N N ∂ t P + N a = P + N P N ∂ t I = − A P + N a + e + P + N P N f . (3) As P N P + N = I , we get, multiplying (3) by P N , that a true solves N d a dt = − P N A P + N a + P N e + P N f 4 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  10. DAE for the projection coefficents On the other hand, ∂ t P + N a = P + N P N ∂ t I = − A P + N a + e + P + N P N f (4) has a solution if and only if − A P + N a + e is in the range of P + N . 5 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  11. DAE for the projection coefficents On the other hand, ∂ t P + N a = P + N P N ∂ t I = − A P + N a + e + P + N P N f (4) has a solution if and only if − A P + N a + e is in the range of P + N . This holds true, in turn, if ( I − P + N P N ) A P + N a = ( I − P + N P N ) e . 5 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  12. DAE for the projection coefficents On the other hand, ∂ t P + N a = P + N P N ∂ t I = − A P + N a + e + P + N P N f (4) has a solution if and only if − A P + N a + e is in the range of P + N . This holds true, in turn, if ( I − P + N P N ) A P + N a = ( I − P + N P N ) e . Noting that ( I − P + N P N ) e ( t ) = ( I − P + N P N ) A P + N a true N N ) ′ = P N , we compute: and, recalling that ( P + � ( I− P + N P N ) A P + � 2 � 2 N a true N A N ) a true · a true = � H N a true L 2 (Ω) = ( S N − A ′ R N , N N N N i , j =1 , A N = P N A P + where S N = {� A ϕ i , A ϕ j �} N N and 1 H N := ( S N − A ′ 2 . N A N ) 5 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  13. DAE for the projection coefficents On the other hand, ∂ t P + N a = P + N P N ∂ t I = − A P + N a + e + P + N P N f (4) has a solution if and only if − A P + N a + e is in the range of P + N . This holds true, in turn, if ( I − P + N P N ) A P + N a = ( I − P + N P N ) e . Noting that ( I − P + N P N ) e ( t ) = ( I − P + N P N ) A P + N a true N N ) ′ = P N , we compute: and, recalling that ( P + � ( I− P + N P N ) A P + � 2 � 2 N a true N A N ) a true · a true = � H N a true L 2 (Ω) = ( S N − A ′ R N , N N N N i , j =1 , A N = P N A P + where S N = {� A ϕ i , A ϕ j �} N N and 1 H N := ( S N − A ′ 2 . N A N ) Thus a true solves the algebraic equation: N 0 = H N a + e o for e o = − H N a true . N 5 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  14. DAE for the projection coefficients = P + N P + Finally we find that if ∂ t I + AI = f , I (0) = f 0 then a true N I N solves the following DAE: d a N a + e m + P N f , dt = − P N A P + 0 = H N a + e o , a (0) = P N f 0 , (5) e m = P N e = P N A ( P + e o = − H N P N I N P N I − I ) 1 where S N = {� A ϕ i , A ϕ j �} N 2 . i , j =1 and H N := ( S N − A ′ N A N ) 6 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  15. Outline Minimax projection method Projection coefficients as a solution of DAE Bounding set for the projection error Ellipsoid containing the projection coefficients State estimation for a linear transport equation Parameter identification for linear Darcy equation 7 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  16. A priori estimates For A ϕ = M · ∇ ϕ − a ∆ ϕ we get an estimate: N e m · e m = � P N A ( P + N P N I − I ) � 2 � � ϕ k , M · ∇ ( P + N P N I − I ) � 2 R N = L 2 (Ω) k =1 ≤ � ρ 1 ( · , t ) � L ∞ (Ω) �∇ ( P + N P N I − I ) � 2 L 2 (Ω) ≤ � ρ 1 ( · , t ) � L ∞ (Ω) λ − 1 N +1 � ∆ I ( · , t ) � 2 L 2 (Ω) where ρ 1 ( x , t ) := � M ( x , t ) � 2 R n . 8 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  17. A priori estimates For A ϕ = M · ∇ ϕ − a ∆ ϕ and I N := P + N P N I we get an estimate: e o · e o = � H N a true � 2 R N = � ( I − P + N P N ) A P + N P N I ( · , t ) � L 2 (Ω) N � � ϕ k , A P + N P N I � 2 � � ϕ k , M · ∇ P + N P N I � 2 = L 2 (Ω) = L 2 (Ω) k > N k > N � λ − 2 k �− ∆ ϕ k , M · ∇ P + N P N I � 2 = L 2 (Ω) k > N ≤ 2 λ − 1 N +1 � λ − 1 1 ρ 2 ( · , t ) + ρ 1 ( · , t ) � L ∞ (Ω) � ∆ I ( · , t ) � 2 L 2 (Ω) where ρ 1 ( x , t ) := � M ( x , t ) � 2 R n , ρ 2 ( x , t ) := � J M ( x , t ) � 2 , J M is the Jacobian of M . 9 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  18. Outline Minimax projection method Projection coefficients as a solution of DAE Bounding set for the projection error Ellipsoid containing the projection coefficients State estimation for a linear transport equation Parameter identification for linear Darcy equation 10 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

  19. Uncertain DAE for the projection coefficents = P + N P + Finally we find that if ∂ t I + AI = f , I (0) = f 0 then a true N I N solves the following DAE: d a N a + e m + P N f , dt = − P N A P + (6) 0 = H N a + e o , a (0) = P N f 0 , e m = P N e = P N A ( P + e o = − H N P N I N P N I − I ) and � T � T � e m � 2 R N + � e o � 2 � ∆ I ( · , t ) � 2 R N dt ≤ C λ N +1 L 2 (Ω) dt 0 0 � T ≤ C 1 ( �∇ f 0 � 2 � f ( x , t ) � 2 L 2 (Ω) + L 2 (Ω) dt ) 0 ≤ C ∗ where C ∗ = C ∗ ( M , f 0 , f ) is a constant. 11 / 56 Estimation and identification for parabolic PDEs (Sergiy Zhuk) NDNS+ workshop, EMI

Recommend


More recommend