On spectral bounds for symmetric Markov chains with coarse Ricci curvatures Kazuhiro Kuwae (Kumamoto University) Stochastic Analysis and Applications German–Japanese bilateral research project Okayama University 27 September
Aim 1 Under the coarse Ricci curvature lower bound, (1) Upper estimate of (non-linear) spec- tral radius (2) Lower estimate of (non-linear) spec- tral gap (3) Strong L p -Liouville property for P - harmonic maps
Plan of talk 2 (1) Wasserstein distance (Historical Re- mark) (2) Coarse Ricci curvature (3) CAT(0)-space, 2-uniformly convex space (4) Main Theorems
Wasserstein space 3 Def 3.1 (Wasserstein distance) ( E, d ): Polish space, p ∈ [1 , ∞ [. P p ( E ):= { µ ∈ P ( E ) | E d p ( · , ∃ / ∀ ∫ x 0 ) dµ < ∞} , For µ, ν ∈ P p ( E ), 1 /p (∫ ) d p ( x, y ) π ( dxdy ) d W p ( µ, ν ) := inf π ∈ Π( µ,ν ) E × E : p -Wasserstein distance.
Rem 3.1 (1) d W 1 is nothing but the Kantorovich-Rubinstein distance. d W p was (re)discovered by var- ious authors independently: Gini (’14): d W 1 on discrete prob. on R . Kantorovich (’42): d W 1 on prob. on cpt sp Salvemini (’43): For discrete µ, ν ∈ P ( E ), Dall’Aglio (’56): For general µ, ν ∈ P p ( E ), ∫ 1 d W p ( µ, ν ) p = 0 | F − 1 µ ( t ) − F − 1 ν ( t ) | p dt .
Fr´ echet (’57): metric properties of d W p . Kantorovich–Rubinshtein (’58): (∫ ∫ ) d W 1 ( µ, ν ) = sup E fdµ − E fdν f :1-Lip Vasershtein (’69): d W 1 ( µ, ν ) := X ∼ µ,Y ∼ ν E[ d ( X, Y )] inf Dobrushin (’70) named ‘Vasershtein distance’ Mallows (’72): d W 2 in statistical context Tanaka (’73): d W 2 , Boltzmann equation
Bickel–Freedman (’80): d W 2 was named as Mallows metric (2) In English literatures, the German spelling ‘Wasserstein’ 1 is used (attributed to the name ‘Vasershtein’ being of Germanic ori- gin). 1 Vaserstein himself uses the terminology ‘Wasserstein distance’ in http://www.math.psu.edu/vstein/
Coarse Ricci curvature 4 ( E, d ): Polish space, E = B ( E ): Borel field. N 0 := N ∪ { 0 } . X = (Ω , X n , F n , F ∞ , P x ) x ∈ E : conservative Markov chain on ( E, E ). Ω := E N 0 : set of all E -valued sequences ω = { ω ( n ) } n ∈ N 0 . X n ( ω ) := ω ( n ), n ∈ N 0 .
P ( x, dy ) := P x ( X 1 ∈ dy ), x ∈ E : transition kernel of X: P ( x, dy ) satisfies the following: (P1) For each x ∈ E , P ( x, · ) ∈ P ( E ). (P2) For each A ∈ E , P ( · , A ) ∈ E . Further we impose the following: (P3) For each x ∈ E , P ( x, · ) ∈ P 1 ( E ).
We set P x ( A ) := P ( x, A ), A ∈ E and ∫ P f ( x ) := E f ( y ) P x ( dy ) = E x [ f ( X 1 )]. For the given Markov chain X as above and a fixed n ∈ N , a Markov chain X n = (Ω , X n k , F n k , F n ∞ , P n x ) x ∈ E with state space ( E, d ) defined by the transition kernel P n ( x, dy ) is called an n -step Markov chain .
Def 4.1 ( Ollivier (2009)) The coarse Ricci curvature κ ( x, y ) along ( xy ) for x ̸ = y is defined by κ ( x, y ) := 1 − d W 1 ( P x , P y ) ( ≤ 1) d ( x, y ) and κ :=inf { κ ( x, y ) | ( x, y ) ∈ E 2 \ diag } is said to be the lower bound of the coarse Ricci curvature . κ ∈ [ −∞ , 1].
The n -step coarse Ricci curvature κ n ( x, y ) of X along ( xy ) is defined to be d W 1 ( P n x , P n y ) κ n ( x, y ) := 1 − d ( x, y ) and κ n :=inf { κ n ( x, y ) | ( x, y ) ∈ E 2 \ diag } is its lower bound. κ n ( x, y ) is nothing but the coarse Ricci curvature for X n and κ 1 ( x, y ) = κ ( x, y ) for ( x, y ) ∈ E 2 \ diag . Note that κ n ≥ 1 − (1 − κ ) n holds.
Recent works on coarse Ricci curvature: Lin-Yau (2010): locally finite graphs 1 − 1 − 1 ( ) κ ( x, y ) ≥ − 2 d x d y Lin-Lu-Yau (2011): New def for κ ( x, y ). Jost-Liu (2011): locally finite graphs 1 − 1 − 1 ( ) κ ( x, y ) ≥ − 2 d x d y + Bauer-Jost-Liu (2011): graphs with loops 1 1 n ≤ λ 1 ≤ · · · ≤ λ N − 1 ≤ 1+(1 − κ n ) 1 − (1 − κ n ) n
Kitabeppu (2011): Lower estimate for κ ( x, y ) under CD( K, N ) Veysseire (2012): m -sym Markov process 1 1 − d W 1 ( P t ( x, · ) , P t ( y, · ) ( ) κ ( x, y ):=lim ≥ κ ∈ R t d ( x, y ) t → 0 ⇒ d W 1 ( P t ( x, · ) , P t ( y, · )) ≤ e − κt d ( x, y ) , E ( f ) m ( E ) < ∞ , κ ≤ if κ > 0 . ∥ f − 〈 m, f 〉∥ 2 2
Ex 4.1 (Sym. simple random walk on Z n ) E := Z n , d Z n ( x, y ) := ∑ n i =1 | x i − y i | : x, y ∈ Z n : i =1 | x i − y i | 2 ) 1 (∑ n 2 : x, y ∈ Z n d R n ( x, y ) := X: symmetric simple random walk on Z n . P ( x, dy ) := 1 ∑ δ z ( dy ) . 2 n | x − z | =1 ,z ∈ Z n ⇒ κ ( x, y ) = 0 w.r.t. either of d Z n or d R n . =
Ex 4.2 (RW on locally finite graph) Jost-Liu (2011): G = ( V, E ): a locally finite graph d x : degree at vertex x ∈ V def x ∼ y ⇐ ⇒ xy ∈ E 1 ∑ P ( x, dz ) := x ∼ y δ y ( dz ) d x 1 − 1 − 1 ( ) κ ( x, y ) ≥ − 2 d x d y + Equality holds if G = ( V, E ) is a tree.
Ex 4.3 (RW on Riemannian mfd) E = M : C ∞ compl. N -dim Riem mfd. ε > 0. m = vol: volume measure. X : ε -step Random walk on E defined by 1 P x ( dy ) = m ( B ε ( x ))1 B ε ( x ) ( y ) m ( dy ) . ⇒ κ ( x, y ) = ε 2 Ric( v,v ) Ollivier(09) 2( N +2) + O ( ε 3 + ε 2 d ( x, y )) = for v ∈ U x M and y ∈ exp x tv with t = d ( x, y ) small enough.
Ex 4.4 (Circle graph) G = ( V, E ): a circle graph of size N ; V := { x i } N i =1 : vertices, E := { x i x i +1 } N i =1 ( x N + i = x i ( i ∈ N )): edges, d x ( G ) = 2 for x ∈ V : degree at x ∈ V , P x i ( dy ) := 1 2 δ x i − 1 ( dy ) + 1 2 δ x i +1 ( dy ). κ ( x, y ) = 0 for ( x, y ) ∈ V × V \ diag , κ n ( x, y ) ≥ 0 for ( x, y ) ∈ V × V \ diag ,
X (hence X n ) is m -symmetric w.r.t. ∑ N 1 m ( dy ) := i =1 δ x i ( dy ). N We take N = 5. 3-step Markov chain X 3 is associated with G 3 := ( V 3 , E 3 ) defined by V 3 := V and E 3 := { x i x j | 1 ≤ i, j ≤ 5 with i ̸ = j } . The transition kernel P 3 x ( dy ) is given by x i = 1 8 δ x i − 2 + 3 8 δ x i − 1 + 3 8 δ x i +1 + 1 P 3 8 δ x i +2 .
d x ( G 3 ) = 4. The 3-step coarse Ricci curvature κ 3 ( x, y ) for xy ∈ E 3 can be estimated by use of Bauer-Jost-Liu (2011). κ 3 ( x i , x i +1 ) = 3 5 8 ≤ κ 3 ( x i , x i +2 ) ≤ 7 8 , 8 . 3 Therefore, κ 3 ( x, y ) ≥ 8 for all ( x, y ) ∈ V × V \ diag .
CAT(0)-space, 2-unif. convex sp 5 Def 5.1 (CAT(0)-space) ( Y, d Y ): CAT(0)-space ⇐ ⇒ For ∀ z, x, y ∈ Y , ∃ γ : [0 , 1] → Y with γ 0 = x , γ 1 = y s.t. for t ∈ [0 , 1] d 2 Y ( z, γ t ) ≤ (1 − t ) d 2 Y ( z, x ) + td 2 Y ( z, y ) − t (1 − t ) d 2 Y ( x, y ) . Cartan-Alexandrov-Toponogov
Ex 5.1 (Examples of CAT(0)-spaces) • Hadamard manifold; simply connected smooth compl Riem mfd with NPC. • products of CAT(0)-sp • Hilbert space • convex subset of CAT(0)-space • Tree • Euclidean Buildings • CAT(0)-space valued L 2 -maps �
Def 5.2 (2-Uniformly Convex Space) ( Y, d ): 2 -uniformly convex with k > 0 def ⇐ ⇒ ( Y, d ): geodesic space & ∀ x, y, z ∈ Y , ∀ γ := ( γ t ) t ∈ [0 , 1] : min. geo. in Y from x to y & ∀ t ∈ [0 , 1], d 2 ( z, γ t ) ≤ (1 − t ) d 2 ( z, x ) + td 2 ( z, y ) − k 2 t (1 − t ) d 2 ( x, y ) . z = γ t = ⇒ k ∈ ]0 , 2]. �
Ex 5.2 (Examples of 2-Unif. Conv. Spaces) • Convex subset of a 2-uniformly convex space. • CAT(0)-space • CAT(1)-space with diam < π 2 is 2-uniformly convex (see Ohta (2007)) • L 2 -maps into a CAT(1)-sp. with diam < π 2 �
( Y, d Y ): complete 2-unif, convex space γ , η ( ⊂ Y ): minimal geodesic segments def γ ⊥ p η ⇐ ⇒ p ∈ γ ∩ η , d Y ( x, p ) ≤ d Y ( x, y ) ∀ x ∈ γ, y ∈ η . (B): γ ⊥ p η ↔ η ⊥ p γ . Ex 5.3 (Examples satisfying (B)) • complete CAT(0)-space. • complete CAT(1)-sp with diam < π/ 2.
Def 5.3 (Barycenter) ( Y, d Y ): complete sep. 2-unif. convex space µ ∈ P 1 ( Y ) ⇒ b ( µ ): ∃ 1 unique minimizer (independent of w ∈ Y ) of ∫ ( d 2 Y ( z, y ) − d 2 z �→ Y ( w, y )) µ ( dy ) . Y We call b ( µ ) the barycenter of µ .
Lem 5.1 (Jensen’s inequality, K. (2010)) ( Y, d Y ): complete sep. 2-unif. convex space. µ ∈ P 1 ( Y ). (B): γ ⊥ p η ↔ η ⊥ p γ . Then for any l.s.c. convex func ϕ on Y ∫ ϕ ( b ( µ )) ≤ ϕ ( x ) µ ( dx ) . Y
Ass 5.1 m ∈ P 1 ( E ), supp[ m ] = E , p ≥ 1, X : m -sym Markov chain on E with (P3), ( Y, d Y ): compl sep. 2-unif. convex space, (B): γ ⊥ p η ↔ η ⊥ p γ , (CG): Convex Geometry: ∃ Φ : Y 2 → R convex s.t. C − 1 d Y ≤ Φ ≤ Cd Y on Y × Y for C > 0.
L p ( E, Y, m ): space of L p -maps, L p ( E, Y ; m ) := { u : E → Y m’ble map | ∫ m d p Y ( u ( x ) , o ) m ( dx ) < ∞∃ / ∀ o ∈ Y } / ∼ , E ∫ d L p ( u, v ) p := d p Y ( u ( x ) , v ( x )) m ( dx ) , E ∫ ∫ C p d p ( x, y ) m ( dx ) m ( dy ) ≤ ∞ p := E E ( C p < ∞ ⇔ m ∈ P p ( E )) . �
def Def 5.4 u ∈ S ( E, Y ) ⇔ ♯ (Im( u )) < ∞ . def d Y ( u ( x ) ,u ( y )) u ∈ Lip( E, Y ) ⇔ Lip( u ):=sup < ∞ . d ( x,y ) x ̸ = y m ∈ P p ( E ) ⇒ Lip( E, Y ) ⊂ L p ( E, Y ; m ) u ∈ S ( E, Y ) ∪ Lip( E, Y ) ⇒ u ∗ P x ∈ P 1 ( Y ) ⇒ P u ( x ) := b ( u ∗ P x ). dense → L p ( E, Y ; m ) and Thm 5.1 S ( E, Y ) ֒ dense → L p ( E, Y ; m ) if m ∈ P p ( E ) . Lip( E, Y ) ֒ Lem 5.2 κ n ∈ R , u ∈ Lip( E, Y ) ⇒ Lip( P n u ) ≤ C 2 (1 − κ n )Lip( u ) .
Recommend
More recommend