Nutrient Demand, Risk and Climate change: Evidence from historical rice yield trials in India Dr. Sandip K. Agarwal & Dr. Ali Saeb Indian Institute of Science Education and Research, Bhopal (IISERB)
Research Objectives - Model the stochastic production function for the rice conditional on input and weather. - Estimate the average yields of rice and risk through the moments of the rice yield distribution. - Identify the marginal effects of nutrient and climate change on the rice yield distribution. - Simulate the demand for nutrients and insurance under scenarios of climate change, consistent with economic rationales of profit maximization and utility maximization.
Data - Rice yield data is sourced from the Indian Institute of Soil Science (IISS), Bhopal, which is part of Long Term Fertilizer Experiments (LTFE) - Rice yield for 6 stations - Barrackpore (BKP), Bhubaneshwar (BBS), Jagtial (JGT), Pantnagar (PNT), Pattambi (PTT) and Raipur (RPR). - Yield data is for the period between 1973-2016. - Weather data – daily rainfall, minimum and maximum, temperatures; Primarily used the Indian Meteorological Department (IMD) data, and partly the National Oceanic and Atmospheric Administration (NOAA).
Data – Daily Avg. Min. & Max. Temperature Ripening Vegetative Reproductive Ripening Vegetative Reproductive
Data – Daily Avg. Rainfall Vegetative Reproductive Ripening Reproductive Ripening
Methodology - OLS regression and Beta Regression - OLS regression: - Beta regression: - Beta density:
Methodology - Dependent variable: log(Yield) & Normalized Yield - Independent variables: Nutrients, Weather, Station Fixed Effects - Nutrients: N, P & K treatment levels with (with their quadratic term) - Weather variables organized yearly as 3 growth stages: vegetative (Jun. – Aug.), reproductive (Sep.) and ripening stage (Oct.) - Weather variables are averages of rainfall, min. and max. temperatures along with their standard deviation, skewness, and percentiles to account for weather distribution.
Results – Moments of Yield density Yield Mean Yield Standard deviation Yield Skewness - N increases the yield and the yield variability - Yield skewness falls (i.e. becomes more negative)
Results – Yield density BBS JGT BKP PTT PNT RPR
Results – Marginal Productivity of Nitrogen - Marginal Prodcuitvity of Nitrogen (MPN) as consistent with economic rationale of profit maximization is used to find N demand: MPN = Price of nitrogen. OLS Regression Beta Regression
Results - Rice yields are most sentisitve to rising temperatures during the vegetative and the reproductive stages. - Rainfall during the ripening stage adversely affects the yield, and can be severe, if increase in average rainfall is contributed by lower percentiles of rainfall distribution. Ongoing: - Effect of weather changes on the yield distribution and the productivity of the nutrients. - Simulating the changes in the demand for nutrient and insurance as a result of weather changes
References - Agarwal, S. K. (2017). Subjective beliefs and decision making under uncertainty in the field. - Babcock, B. A., & Hennessy, D. A. (1996). Input demand under yield and revenue insurance. American journal of agricultural economics , 78 (2), 416-427. - Barnwal, P., & Kotani, K. (2013). Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India. Ecological Economics , 87 , 95-109. - Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature climate change , 1 (1), 42-45. - Luo, Q. (2011). Temperature thresholds and crop production: a review. Climatic Change , 109(3-4), 583-598. - Pattanayak, A., & Kumar, K. K. (2014). Weather sensitivity of rice yield: evidence from India. Climate Change Economics , 5 (04), 1450011. - Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of sciences, 106(37), 15594-15598. - Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences , 107 (33), 14562-14567.
Thank You !
Table 1: Yield Regression Dependent variable: OLS regression Beta regression log(Yield) Normalized Yield (1) (2) (3) (4) Nutrients N 0.0081 ∗∗∗ 0.0081 ∗∗∗ 0.0124 ∗∗∗ 0.0135 ∗∗∗ (0.0013) (0.0013) (0.0021) (0.0023) N 2 − 0.00003 ∗∗∗ − 0.00003 ∗∗∗ − 0.00004 ∗∗∗ − 0.0001 ∗∗∗ (0.00001) (0.00001) (0.00001) (0.00001) P 0.0044 ∗∗∗ 0.0043 ∗∗∗ 0.0122 ∗∗ 0.0146 ∗∗ (0.0016) (0.0016) (0.0058) (0.0063) K 0.0020 ∗∗∗ 0.0020 ∗∗∗ 0.0082 ∗∗∗ 0.0075 ∗∗∗ (0.0005) (0.0005) (0.0027) (0.0027) K 2 − 0.0001 ∗∗ − 0.0001 ∗ (0.00004) (0.0001) Vegetative T min : AV G − 0.0841 ∗∗∗ − 0.1497 − 0.0253 − 0.1509 ∗∗∗ (0.0314) (0.1113) (0.0920) (0.0549) T max : AV G 0.0236 − 0.1105 0.0754 − 0.0578 (0.0316) (0.0884) (0.0466) (0.0877) Rain : AV G 0.0203 ∗∗∗ 0.0120 0.0517 ∗ 0.0350 ∗∗ (0.0077) (0.0101) (0.0312) (0.0162) Days ( T max > crit. ) − 0.0075 − 0.0083 (0.0065) (0.0077) T min : SD − 0.0916 (0.0813) T max : SD 0.1041 ∗∗∗ 0.1902 ∗∗∗ (0.0321) (0.0620) Rain : SD − 0.0140 ∗∗∗ − 0.0267 ∗∗∗ (0.0017) (0.0094) T min : SK − 0.0373 ∗∗∗ (0.0129) T max : SK 0.0854 ∗ 0.1916 ∗∗ (0.0517) (0.0964) Rain : SK 0.0502 ∗∗∗ 0.0766 ∗ (0.0111) (0.0417) T min : 75 th 0.1076 (0.1124) T max : 5 th 0.0499 (0.0363) T max : 75 th 0.0473 0.0718 (0.0329) (0.0447) T max : 95 th 0.0688 ∗∗∗ 0.1029 ∗∗∗ (0.0078) (0.0120) Rain : 5 th 0.4161 ∗∗∗ 0.7189 ∗∗∗ (0.0800) (0.1122) Rain : 25 th − 0.1430 ∗∗ − 0.1601 ∗ (0.0616) (0.0852) Rain : 75 th 0.0117 (0.0089) 1 Rain : 95 th − 0.0032 − 0.0102 ∗∗ (0.0025) (0.0049) Reproductive T min : AV G − 0.0802 ∗∗ − 0.1522 ∗∗∗ − 0.1083 ∗∗∗ − 0.4412 ∗∗∗ (0.0312) (0.0142) (0.0344) (0.1241) T max : AV G 0.0580 − 0.0807 0.1920 ∗ 0.3469 ∗∗∗ (0.0577) (0.0638) (0.1000) (0.0635) Rain : AV G 0.0104 ∗ − 0.0057 0.0363 ∗ − 0.0501 ∗∗∗ (0.0058) (0.0046) (0.0202) (0.0175) Days ( T max > crit. ) − 0.0100 − 0.0148 − 0.0168 (0.0111) (0.0147) (0.0174) T min : SD 0.0686 ∗∗∗ 0.1717 ∗∗ (0.0234) (0.0715) T max : SD − 0.0747 − 0.0870 (0.0635) (0.1326) Rain : SD − 0.0052 − 0.0201 (0.0057) (0.0130) T min : SK 0.0313 0.0491 (0.0292) (0.0603) T min : 5 th 0.0186 ∗∗ 0.0570 (0.0092) (0.0520) T min : 95 th 0.0694 ∗∗∗ 0.2255 ∗∗∗ (0.0154) (0.0566)
Yield Regressions (contd.) (1) (2) (3) (4) T max : 5 th 0.0530 (0.0331) T max : 75 th − 0.1986 ∗∗∗ (0.0631) Rain : 5 th 0.2583 ∗∗∗ 0.4360 ∗∗∗ (0.0610) (0.0485) Rain : 25 th − 0.0406 (0.0253) Rain : 75 th 0.0150 ∗∗∗ (0.0056) Rain : 95 th 0.0017 0.0076 ∗∗∗ (0.0013) (0.0028) Ripening T min : AV G 0.0654 ∗∗ 0.0195 0.0880 ∗∗∗ 0.2228 ∗∗ (0.0257) (0.0157) (0.0161) (0.1046) T max : AV G − 0.4995 ∗∗∗ (0.1327) Rain : AV G − 0.0256 ∗∗ − 0.0656 ∗∗ − 0.0490 − 0.0353 ∗∗ (0.0112) (0.0259) (0.0506) (0.0173) T min : SD 0.0299 (0.0405) Rain : SD 0.0053 (0.0137) Rain : SK 0.0503 (0.0308) T min : 25 th − 0.0500 (0.0420) T min : 75 th − 0.0339 − 0.1160 ∗∗ (0.0240) (0.0544) T min : 95 th 0.0269 ∗∗ (0.0130) T max : 5 th 0.0710 ∗ (0.0389) T max : 25 th 0.1362 ∗∗ (0.0688) T max : 95 th 0.2620 ∗∗∗ (0.0750) Rain : 5 th − 0.8283 ∗∗∗ − 1.7752 ∗∗∗ (0.1502) (0.1815) Rain : 25 th 0.2683 ∗∗ 0.4474 ∗ (0.1255) (0.2399) Rain : 75 th − 0.0200 (0.0171) Rain : 95 th 0.0082 ∗ (0.0043) Intercept 7.3846 ∗∗∗ 8.9882 ∗∗∗ − 9.6665 ∗∗ − 3.0100 (2.1243) (1.9084) (4.1064) (2.9376) City ( BBS/PTT ) − 0.3705 ∗∗∗ − 0.6237 ∗∗∗ (0.0210) (0.0361) 2 City ( BBS ) − 0.3540 ∗∗∗ − 0.5823 ∗∗∗ (0.0146) (0.1183) City ( PTT ) − 0.1270 (0.1797) City ( JGT/PNT ) 0.2485 ∗∗∗ 0.7884 ∗∗ (0.0308) (0.3507) City ( JGT ) 0.2992 ∗∗∗ 0.5461 ∗∗∗ (0.0539) (0.0834) City ( RPR ) 0.5070 (0.4576) Observations 920 920 920 920 R 2 0.6858 0.7298 0.6159 0.6760 Adjusted R 2 0.6773 0.7194 AIC 254.8 136 -1589.6 -1761.7 Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
Yield Regressions (contd.) Precision sub-model (3) (4) N − 0.0023 ∗∗ − 0.0019 ∗ (0.0009) (0.0011) Intercept 2.5818 ∗∗∗ 2.7186 ∗∗∗ (0.0955) (0.1215) City ( BBS/RPR ) 1.4826 ∗∗∗ (0.0360) City ( BBS ) 1.0787 ∗∗∗ (0.0256) City ( RPR ) 1.9004 ∗∗∗ (0.0276) City ( JGT/PTT/PNT ) 0.4308 ∗∗∗ (0.0765) City ( JGT/PTT ) 0.4328 ∗∗∗ (0.0330) City ( PNT ) 0.2094 ∗∗∗ (0.0180) Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01 3
Recommend
More recommend