numerical coarsening using discontinuous shape functions
play

Numerical Coarsening using Discontinuous Shape Functions Jiong Chen - PowerPoint PPT Presentation

Numerical Coarsening using Discontinuous Shape Functions Jiong Chen 1 , Hujun Bao 1 , Tianyu Wang 1 , Mathieu Desbrun 2 , Jin Huang 1 1 State Key Lab of CAD&CG, Zhejiang University 2 Caltech Challenge nonlinear Inhomogeneous Challenge


  1. Numerical Coarsening using Discontinuous Shape Functions Jiong Chen 1 , Hujun Bao 1 , Tianyu Wang 1 , Mathieu Desbrun 2 , Jin Huang 1 1 State Key Lab of CAD&CG, Zhejiang University 2 Caltech

  2. Challenge

  3. nonlinear Inhomogeneous Challenge

  4. Inhomogeneous nonlinear Challenge Require fine mesh

  5. Coarse mesh Inhomogeneous nonlinear Challenge Require fine mesh

  6. Coarse mesh Inhomogeneous nonlinear linear bases Challenge Require fine mesh

  7. Coarse mesh Inhomogeneous nonlinear linear bases Challenge Require fine mesh

  8. Previous works [Nesme 2009] [Kharevych 2009] [Torres 2016]

  9. Not applicable for nonlinear elasticity Previous works [Nesme 2009] [Kharevych 2009] [Torres 2016]

  10. Previous work Data-driven approach to regress the coarse elastic model [Chen 2015]

  11. Rely on data set and parameter tunning Previous work Data-driven approach to regress the coarse elastic model [Chen 2015]

  12. Our solution Z E [ u ] = Ψ ( r u ) dX Ω

  13. Our solution X Z r u = r N i ( X ) u i E [ u ] = Ψ ( r u ) dX i Ω

  14. Our solution X Z r u = r N i ( X ) u i E [ u ] = Ψ ( r u ) dX i Ω i : ∂ 2 Ψ Z r N T K ij ( u ) = ∂ r u 2 : r N j

  15. Our solution X Z r u = r N i ( X ) u i E [ u ] = Ψ ( r u ) dX i Ω

  16. Our solution X Z r u = r N i ( X ) u i E [ u ] = Ψ ( r u ) dX i Ω Homogenize the constitutive model

  17. Our solution X Z r u = r N i ( X ) u i E [ u ] = Ψ ( r u ) dX i Ω Homogenize the constitutive model Approximate the solution space better

  18. Our solution scalar basis 0 0 N(X) ∼ 0 0 • Matrix-valued shape functions = 0 0

  19. Our solution generalize 0 0 N(X) ∼ 0 0 • Matrix-valued shape functions = 0 0 N H : Ω → R d × d i

  20. Our solution generalize 0 0 N(X) ∼ 0 0 • Matrix-valued shape functions = 0 0 N H : Ω → R d × d i • Geometric & physical conditions

  21. Our solution generalize 0 0 N(X) ∼ 0 0 • Matrix-valued shape functions = 0 0 N H : Ω → R d × d i • Geometric & physical conditions Inter-element Inner-element continuity stiffness

  22. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H

  23. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i

  24. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i X O

  25. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i X O

  26. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i X O

  27. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i X O

  28. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i X O

  29. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i X O

  30. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i X O

  31. Matrix-valued shape function u H u H 3 2 X H X H u H 3 2 1 • Element-wise interpolation u ( X ) u H X 4 X ∀ X ∈ Ω H , u ( X ) = N H i ( X ) u X X H X H i Ω H 4 1 X i ∈ Ω H • Corotational formulation " # i ( X )( R T x H X N H i − X H u ( X ) = R X + i ) − X i u(X) X O

  32. Conditions Geometric conditions

  33. Conditions Geometric conditions - Translational invariance X N H i ( X ) = I i

  34. Conditions Geometric conditions - Translational invariance X N H i ( X ) = I i - Rotational invariance X N H i ( X )[ X H i ] × = [ X ] × i

  35. Conditions Geometric conditions - Translational invariance 0 X N H i ( X ) = I 1 i - Rotational invariance 0 X N H i ( X )[ X H i ] × = [ X ] × 0 i - Node interpolation N H i ( X H j ) = δ ij I

  36. Conditions Physical condition

  37. Conditions Physical condition - Reconstruct global “representative” deformation X N H i ( X ) h ab ( X H h ab ( X ) = i ) i

  38. Conditions Physical condition - Reconstruct global “representative” deformation X N H i ( X ) h ab ( X H h ab ( X ) = i ) i - Global harmonic displacement at rest shape [Kharevych 2009]

  39. Conditions Physical condition - Reconstruct global “representative” deformation X N H i ( X ) h ab ( X H h ab ( X ) = i ) i - Global harmonic displacement at rest shape [Kharevych 2009] - Contribute 6 more constraints in 3D for each element

  40. Numerical conditioning Smooth regularization Z i ) T : M : r N H ( r N H � � tr dX i Ω

  41. Numerical conditioning Smooth regularization Z i ) T : M : r N H ( r N H � � tr dX i Ω rank-4 tensor

  42. Numerical conditioning Smooth regularization Z i ) T : M : r N H ( r N H � � tr dX i Ω rank-4 tensor • Two Options of metric - Harmonic: M = I M = ∂ 2 Ψ / ∂ F 2 - -harmonic: Ψ ( -constitutive model, -deformation gradient) Ψ F

  43. Summary • Finding basis ->

  44. Summary • Finding basis -> Solve a constrained quadratic programming per element Z i ) T : M : r N H ( r N H � � tr dX i Ω X N H s.t. i ( X ) = I i X N H i ( X )[ X H i ] × = [ X ] × i X N H i ( X ) h ab ( X H i ) = h ab ( X ) i N H i ( X H j ) = δ ij I

  45. Basis discretization • Our basis functions are discretely represented piecewise bilinear function X N H n ij N h i ( X ) = j ( X ) j

  46. Balance • Our optimized basis function does not guarantee -continuity C 0 u p ( X h j ) 6 = u q ( X h N p,i ( X h j ) 6 = N q,i ( X h j ) j ) i j Ω p Ω q

  47. Balance • Our optimized basis function does not guarantee -continuity C 0 u p ( X h j ) 6 = u q ( X h N p,i ( X h j ) 6 = N q,i ( X h j ) j ) i j Ω p Ω q Proper balance is crucial! • Coarse element generally appears to be “stiffer” . • Discontinuous basis functions make system “softer” .

  48. Make balance

  49. Make balance

  50. Simulation � 1 • Calculation of deformation gradient ξ � 1 e x i � X i ) : ∂ N H +1 X R e ⌦ ( R T i r X x = r X u + I = ( R e � I) + + I ∂ X i − 1 ! 0 1 H X e x i � X i ) : ∂ N H ∂ N � 1 @X j R e ⌦ ( R T i = R e + A ∂ξ ∂ξ i j

  51. Simulation � 1 • Calculation of deformation gradient ξ � 1 e x i � X i ) : ∂ N H +1 X R e ⌦ ( R T i r X x = r X u + I = ( R e � I) + + I ∂ X i − 1 ! 0 1 H X e x i � X i ) : ∂ N H ∂ N � 1 @X j R e ⌦ ( R T i = R e + A ∂ξ ∂ξ i j • Quadrature: standard Gaussian quadrature Ω H

  52. Results

  53. Comparison with trilinear basis Traditional trilinear basis function turns out to be overstiffening

  54. Relation to [Kharevych 2009] Fine Our method [Kharevych 2009]

  55. Relation to [Kharevych 2009] Fine Our method [Kharevych 2009]

  56. Relation to [Kharevych 2009] Our method can better capture the detailed deformation Fine Our method [Kharevych 2009]

  57. Relation to [Kharevych 2009] Our method can better capture the detailed deformation Fine Our method [Kharevych 2009]

  58. Relation to [Nesme 2009]

  59. Relation to [Nesme 2009]

  60. Relation to [Nesme 2009] Diagonal basis Far boundary vanishing Node interpolation Translation invariance Rotation invariance Psi-harmonic

  61. Relation to [Nesme 2009] Diagonal basis Far boundary vanishing Node interpolation Translation invariance Rotation invariance Psi-harmonic [Nesme 2009]

Recommend


More recommend