inhomogeneities in magnetic systems
play

Inhomogeneities in magnetic systems Alberta Bonanni Institute for - PowerPoint PPT Presentation

European School on Magnetism 2009 Inhomogeneities in magnetic systems Alberta Bonanni Institute for Semiconductor and Solid State Physics, Johannes Kepler University, Linz Austria Time-table 04.09.2009 J. Mike D. Coey Magnetism of


  1. European School on Magnetism 2009 Inhomogeneities in magnetic systems Alberta Bonanni Institute for Semiconductor and Solid State Physics, Johannes Kepler University, Linz – Austria

  2. Time-table 04.09.2009 J. Mike D. Coey Magnetism of dilute oxides 09.09.2009 A. Bonanni Inhomogeneous magnetic systems: introduction and examples Wiktor Stefanowicz Measurements issue Bogdan Faina Materials issue Coffee break Samaresh Guchhait Amorphous GeC:Mn G. Irina Groza AntiferromagneticCoO Discussion A. Bonanni Inhomogeneous magnetic systems: control and applications Discussion

  3. Before applying any model

  4. Before applying any model We must gain knowledge about the distribution of magnetic ions

  5. Before applying any model We must gain knowledge about the distribution of magnetic ions \ at surfaces \ at interfaces \ in the bulk

  6. Two examples Tunneling magnetoresistance [TMR]: magnetic ions distribution at the interface Diluted Magnetic Semiconductors [DMS]: magnetic ions distribution in the volume

  7. TMR

  8. Julliere‘s model Jullière‘s model: \ constant tunneling matrix elements \ electrons tunnel without spin-flip TM films � TMR ~ 2\3 ~ 67% cfr. B. Dieny

  9. Julliere‘s model – Fe/MgO/Fe Jullière‘s model: \ constant tunneling matrix elements \ electrons tunnel without spin-flip TM films � TMR ~ 2\3 ~ 67% TMR > 350% S. Yuasa et al., Nature Materials 3, 868 [2004]

  10. Julliere‘s model – Fe/MgO/Fe Jullière‘s model: \ constant tunneling matrix elements \ electrons tunnel without spin-flip ▪ k || not conserved ▪ average density of states ▪ no quantum mechanical matrix elements � appropriate for disordered interfaces TM films � TMR ~ 2\3 ~ 67% TMR > 350% S. Yuasa et al., Nature Materials 3, 868 [2004]

  11. Fe/MgO/Fe S. Yuasa et al., Nature Materials 3 , 868 [2004] High-quality interface Quantum effects important Fabry-Perot interferences

  12. Quantum mechanical model W. H. Butler et al ., Phys. Rev. B 63, 054416 [2001] J. Mathon et al ., Phys. Rev. B 63, 220403R [2001] TMR ~ 1000% for: \ ideal interface \ T = 0 K \ thickness = 20 ML

  13. Quantum mechanical model – CoFeB/MgO/CoFeB W. H. Butler et al ., Phys. Rev. B 63, 054416 [2001] 300 K J. Mathon et al ., Phys. Rev. B 63, 220403R [2001] TMR ~ 1000% for: \ ideal interface \ T = 0 K \ thickness = 20 ML S. Ikeda et al ., Appl. Phys. Lett 93, 082508 [2008]

  14. Quantum mechanical model – CoFeB/MgO/CoFeB W. H. Butler et al ., Phys. Rev. B 63, 054416 [2001] 300 K J. Mathon et al ., Phys. Rev. B 63, 220403R [2001] TMR = 1100% at 5 K for ~ 22 ML TMR ~ 1000% for: \ ideal interface \ T = 0 K \ thickness = 20 ML S. Ikeda et al ., Appl. Phys. Lett 93, 082508 [2008]

  15. DMS

  16. DMS – recalling the basics Diluted Magnetic Semiconductors \ semi-conducting materials \ in which a fraction of the host cations B \ is substitutionally and randomly replaced \ by transition metals or rare earths � partially filled d -states transition metals � partially filled f -states rare earths unpaired electrons � magnetic behaviour

  17. DMS – recalling the basics Diluted Magnetic Semiconductors \ semi-conducting materials \ in which a fraction of the host cations B \ is substitutionally and randomly replaced \ by transition metals or rare earths � partially filled d -states transition metals � partially filled f -states rare earths Challenges: \ ferromagnetism unpaired electrons � magnetic \ T C above RT behaviour

  18. Challenge RT ferromagnetism in DMS theoretically requires: 1] holes 2] magnetic ions T.Dietl et al ., Science 287 , 1019 [2000]

  19. Ferromagnetic DMS: status

  20. State-of-the-art for (Ge,Mn)Te T C = 190 K 1.57 x 10 21 holes cm -3 : 8% (Ge,Mn)Te MBE Y. Fukuma et al. Appl.Phys.Lett. 93 , 252502 [2008]

  21. State-of-the-art for (Ga,Mn)As Situation 16 years (!) after the discovery of carrier-mediated mechanism in III-V T C = 185 K 8% (Ga,Mn)As: annealed/etched/annealed K.Olejník et al. Phys. Rev. B 78 , 054403 [2008] M. Wang et al. Appl. Phys. Lett. 93 , 132103 [2008]

  22. High T C : most promising DMS p-d Zener model prediction of T C 5% Mn d 5 , p = 3.5 × 10 20 cm -3 T.Dietl et al ., Science 287 , 1019 [2000]

  23. High T C : most promising DMS p-d Zener model prediction of T C 5% Mn d 5 , p = 3.5 × 10 20 cm -3 GaN & ZnO: small lattice constant a 0 strong p-d hybridization \ increased N 0 β \ large T C T.Dietl et al ., Science 287 , 1019 [2000]

  24. Challenge RT ferromagnetism in DMS theoretically requires: 1] holes 2] magnetic ions T.Dietl et al ., Science 287 , 1019 [2000] Magnetization above room temperature reported even: 1] without valence band holes 2] without magnetic ions (!)

  25. Magnetically doped materials With spontaneous magnetization at 300 K wz -c- (Ga,Mn)N , (In,Mn)N, (Ga,Cr)N, (Al,Cr)N, (Ga,Gd)N, (Ga,Fe)N (Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb, (Ga,Mn)P:C (Zn,Mn)O, (Zn,Ni)O, (Zn,Co)O, (Zn,V)O, (Zn,Fe,Cu)O (Zn,Cr)Te (Ti,Co)O 2 , (Sn,Co)O 2, (Sn,Fe)O 2 , (Hf,Co)O 2 (Cd,Ge,Mn)P 2 , (Zn,Ge,Mn)P 2 , (Zn,Sn,Mn)As 2 (Ge,Mn) (La,Ca)B 6 ,C, C 60 , HfO 2 …

  26. Magnetically doped materials With spontaneous magnetization at 300 K wz -c- (Ga,Mn)N , (In,Mn)N, (Ga,Cr)N, (Al,Cr)N, (Ga,Gd)N, (Ga,Fe)N (Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb, (Ga,Mn)P:C Origin of ferromagnetism (Zn,Mn)O, (Zn,Ni)O, (Zn,Co)O, (Zn,V)O, (Zn,Fe,Cu)O (Zn,Cr)Te “The most challenging issue in nowadays (Ti,Co)O 2 , (Sn,Co)O 2, (Sn,Fe)O 2 , (Hf,Co)O 2 (Cd,Ge,Mn)P 2 , (Zn,Ge,Mn)P 2 , (Zn,Sn,Mn)As 2 physics of magnetism“ (Ge,Mn) (La,Ca)B 6 ,C, C 60 , HfO 2 … Mike Coey 04.09.2009 EMC

  27. ferromagnetism On account of the difficulty encountered and the sometimes ephemeral nature of the magnetic moment, we will refer to the phenomenon as phantom ferromagnetism P.J. Grace et al. Adv.Mat. 21 , 71 [2009]

  28. Inhomogeneous FM a) random distribution b) crystallographic or chemical phase separation c) aggregation at surfaces or interfaces d) aggregation in grain boundaries M. Coey seminar 04.09.2009

  29. To elucidate origin of ferromagnetism: combine controlled epitaxy with comprehensive nanocharacterization for each material

  30. New paradigm Extended characterization – already online during growth \ to elucidate correlation between fabrication conditions and ▪ structural [synchrotron XRD, HRTEM, EDS] ▪ magnetic [SQUID, EPR] ▪ optical [PL, magneto-optics] ▪ electrical [(magneto-)transport] ▪ chemical [EDS, SIMS] properties

  31. New paradigm Extended characterization – already online during growth \ to elucidate correlation between fabrication conditions and ▪ structural [synchrotron XRD, HRTEM, EDS] - advanced microscopic characterization - ▪ magnetic [SQUID, EPR] ▪ optical [PL, magneto-optics] standard ▪ electrical [(magneto-)transport] macroscopic ▪ chemical [EDS, SIMS] characteriz. properties

  32. Growth – (Ga,Fe)N:Si(Mg) ▪ MOVPE [ in-situ: ellipsometry, laser reflectometry] reactor: AIXTRON 200 ▪ c-plane Al 2 O 3 substrates ▪ Precursors: TMGa, NH 3 , Cp 2 Fe, Cp 2 Mg, SiH 4 , Cp 2 Mn ▪ Growth procedure: 1] substrate nitridation 2] LT (540 °C) GaN nucl. layer (Ga,Fe)N:Si(Mg) 3] annealing/recrystallisation 4] 1 µm HT (1050 °C) GaN GaN 5] 0.5 – 1 µm (Ga,Fe)N:Si(Mg) a] 800 – 950 °C (0001)Al 2 O 3 b] 50 – 400 sccm Cp 2 Fe

  33. III-Nitrides lattice constant (Å)

  34. [Ferro]magnetic coupling without magnetic ions? DFT [LSDA]: \ cation vacancies \ promote local magnetic moments \ long-range magnetic coupling between intrinsic defects P. Dev et al. Phys.Rev.Lett. 100, 117204 [2008]

  35. Not in high-quality samples - GaN 3 GaN:Si 2 GaN:Mg GaN GaN(:Mg,Si) without Fe 3 ) M ( emu/cm 1 T = 5 K 0 no ferromagnetism -1 -2 A. Bonanni et al. Phys.Rev.Lett. 101 , 135502 [2008] -3 -60 -40 -20 0 20 40 60 H ( kOe )

  36. Not in high-quality samples - GaN 3 GaN:Si 2 GaN:Mg GaN GaN(:Mg,Si) without Fe 3 ) M ( emu/cm 1 T = 5 K 0 no ferromagnetism -1 -2 A. Bonanni et al. Phys.Rev.Lett. 101 , 135502 [2008] -3 -60 -40 -20 0 20 40 60 H ( kOe ) (Ga,Fe)N paramagnetism + ferromagnetism A.Bonanni et al. Phys.Rev.B 75 , 125210 [2007] Phys. Rev.Lett. 101 , 135502 [2008]

  37. Beyond the solubility limit – (Ga,Fe)N Superposition of paramagnetic and ferromagnetic response A. Bonanni et al. Phys.Rev. B 75 , 125210 [2007]

  38. Evaluation of T C 1.0 3 ) Magnetisation ( emu/cm 0.8 (Ga,Fe)N 3 ) 0.5 M S ( emu/cm 0.6 (Ga,Fe)N 1.0 0.0 3 ) T C M ( emu/cm 0.5 0.4 5K T = 005K T = 100K 0.0 T = 005K T = 200K T = 100K -0.5 -0.5 T = 200K T = 320K 0.2 T = 320K T = 380K T = 380K -1.0 -20 0 20 40 60 H ( kOe ) -1.0 0.0 -2 0 2 4 6 8 10 0 100 200 300 400 500 600 H ( kOe) Temperature ( K ) ▪ values of spontaneous magnetization M S Ferromagnetic response persisting at from high field measurements room-temperature ▪ M S vs T � Brillouin-like function � T C

Recommend


More recommend