nonequilibrium markov processes conditioned on large
play

Nonequilibrium Markov processes conditioned on large deviations - PowerPoint PPT Presentation

Nonequilibrium Markov processes conditioned on large deviations Chetrite Raphael Laboratoire J.A. Dieudonne Nice FRANCE New Frontiers in Non-equilibrium Physics of Glassy Materials Kyoto, JAPAN August 2015 Work with Hugo Touchette


  1. Nonequilibrium Markov processes conditioned on large deviations Chetrite Raphael Laboratoire J.A. Dieudonne Nice FRANCE New Frontiers in Non-equilibrium Physics of Glassy Materials Kyoto, JAPAN August 2015 • Work with Hugo Touchette (Stellenbosch, South Africa) • PRL 2013 and Ann. Henri Poincar´ e 2014 • New paper: arxiv:1506.05291 Chetrite Raphael (CNRS) Conditioned processes August 2015 1 / 18

  2. Heuristic of Large Deviation ”Improbable events permit themselves the luxury of occurring.” C.Chan 1928 • Random variable A T which converges typically toward � a � Large Deviation How improbable for A T to converge towards a which is different from the typical value � a � (rare events) : LDP: P (A T ≈ a) ≍ exp( − TI(a)) • I ( a ): rate function (or fluctuation functional). • Large deviation theory: 1 Prove the LDP and 2 calculate the rate function. Chetrite Raphael (CNRS) Conditioned processes August 2015 2 / 18

  3. Heuristic of Large Deviation ”Improbable events permit themselves the luxury of occurring.” C.Chan 1928 • Random variable A T which converges typically toward � a � Large Deviation How improbable for A T to converge towards a which is different from the typical value � a � (rare events) : LDP: P (A T ≈ a) ≍ exp( − TI(a)) • I ( a ): rate function (or fluctuation functional). • Large deviation theory: 1 Prove the LDP and 2 calculate the rate function. Chetrite Raphael (CNRS) Conditioned processes August 2015 2 / 18

  4. Conditioning Problem Physical • Nonequilibrium process: { X t } T t =0 • Observable: A T [ x ] • Consider trajectories leading to the constraint A T = a • Construct effective Markov process for forget the constraint Mathematical • Markov process: { X t } T t =0 • Conditioned process: X t | A T = a • ”Deconditionning” : T →∞ ∼ X t | A T = a = Y t ���� � �� � Equivalent Markovian process conditioned Exemple Jump Process : the mercantile view of the scientific life Chetrite Raphael (CNRS) Conditioned processes August 2015 3 / 18

  5. Conditioning Problem Physical • Nonequilibrium process: { X t } T t =0 • Observable: A T [ x ] • Consider trajectories leading to the constraint A T = a • Construct effective Markov process for forget the constraint Mathematical • Markov process: { X t } T t =0 • Conditioned process: X t | A T = a • ”Deconditionning” : T →∞ ∼ X t | A T = a = Y t ���� � �� � Equivalent Markovian process conditioned Exemple Jump Process : the mercantile view of the scientific life Chetrite Raphael (CNRS) Conditioned processes August 2015 3 / 18

  6. Historial Work on ”Deconditionning” In Probability : Doob 1957 • { W t | to go outside [0 , L ] via L } ≡ Y t ���� EQN: dYt dt = 1 Yt + dWt dt • Brownian bridge : { W t | W T = 0 } ≡ Y t ���� EQN: dYt dt = − Yt T − t + dWt dt • Quasi-stationary distributions (Deroch-Seneta 1967): X t | not reaching absorbing state ≡ Y t ���� ���� absorbing non-absorbing Chetrite Raphael (CNRS) Conditioned processes August 2015 4 / 18

  7. Historial Work on ”Deconditionning” In Probability : Doob 1957 • { W t | to go outside [0 , L ] via L } ≡ Y t ���� EQN: dYt dt = 1 Yt + dWt dt • Brownian bridge : { W t | W T = 0 } ≡ Y t ���� EQN: dYt dt = − Yt T − t + dWt dt • Quasi-stationary distributions (Deroch-Seneta 1967): X t | not reaching absorbing state ≡ Y t ���� ���� absorbing non-absorbing Chetrite Raphael (CNRS) Conditioned processes August 2015 4 / 18

  8. Historial Work on ”Deconditionning” In Probability : Doob 1957 • { W t | to go outside [0 , L ] via L } ≡ Y t ���� EQN: dYt dt = 1 Yt + dWt dt • Brownian bridge : { W t | W T = 0 } ≡ Y t ���� EQN: dYt dt = − Yt T − t + dWt dt • Quasi-stationary distributions (Deroch-Seneta 1967): X t | not reaching absorbing state ≡ Y t ���� ���� absorbing non-absorbing Chetrite Raphael (CNRS) Conditioned processes August 2015 4 / 18

  9. But First : in Physics with Schr¨ odinger 1931 Chetrite Raphael (CNRS) Conditioned processes August 2015 5 / 18

  10. Chetrite Raphael (CNRS) Conditioned processes August 2015 6 / 18

  11. Chetrite Raphael (CNRS) Conditioned processes August 2015 7 / 18

  12. Chetrite Raphael (CNRS) Conditioned processes August 2015 8 / 18

  13. Chetrite Raphael (CNRS) Conditioned processes August 2015 9 / 18

  14. Chetrite Raphael (CNRS) Conditioned processes August 2015 10 / 18

  15. Diffusion Process • SDE: (with additive noise here for simplicity) dX t = F ( X t ) dt + σ dW t x H t L • One or many particles • Equilibrium or nonequilibrium t • Includes external forces, reservoirs • Generator: ∂ t p ( x , t ) = L † p ( x , t ) ∂ t E x [ f ( X t )] = E x [ Lf ( X t )] , L = F · ∇ + D 2 ∇ 2 , D = σσ T • Path distribution: P [0 , T ] [ x ] Chetrite Raphael (CNRS) Conditioned processes August 2015 11 / 18

  16. Diffusion Process • SDE: (with additive noise here for simplicity) dX t = F ( X t ) dt + σ dW t x H t L • One or many particles • Equilibrium or nonequilibrium t • Includes external forces, reservoirs • Generator: ∂ t p ( x , t ) = L † p ( x , t ) ∂ t E x [ f ( X t )] = E x [ Lf ( X t )] , L = F · ∇ + D 2 ∇ 2 , D = σσ T • Path distribution: P [0 , T ] [ x ] Chetrite Raphael (CNRS) Conditioned processes August 2015 11 / 18

  17. Diffusion Process • SDE: (with additive noise here for simplicity) dX t = F ( X t ) dt + σ dW t x H t L • One or many particles • Equilibrium or nonequilibrium t • Includes external forces, reservoirs • Generator: ∂ t p ( x , t ) = L † p ( x , t ) ∂ t E x [ f ( X t )] = E x [ Lf ( X t )] , L = F · ∇ + D 2 ∇ 2 , D = σσ T • Path distribution: P [0 , T ] [ x ] Chetrite Raphael (CNRS) Conditioned processes August 2015 11 / 18

  18. Observable - random variable • Path x t over [0 , T ] • General observable: x H t L � T � T A T = 1 f ( X t ) dt + 1 g ( X t ) ◦ dX t T T 0 0 t P ( A T = a ) • Large deviation principle (LDP): T = 100 I ( a ) P ( A T = a ) ≈ e − TI ( a ) , T → ∞ T = 50 T = 10 s µ Examples • Occupation time, mean speed, empirical drift • Work, heat, probability current, entropy production • Jump process: current, activity Chetrite Raphael (CNRS) Conditioned processes August 2015 12 / 18

  19. Observable - random variable • Path x t over [0 , T ] • General observable: x H t L � T � T A T = 1 f ( X t ) dt + 1 g ( X t ) ◦ dX t T T 0 0 t P ( A T = a ) • Large deviation principle (LDP): T = 100 I ( a ) P ( A T = a ) ≈ e − TI ( a ) , T → ∞ T = 50 T = 10 s µ Examples • Occupation time, mean speed, empirical drift • Work, heat, probability current, entropy production • Jump process: current, activity Chetrite Raphael (CNRS) Conditioned processes August 2015 12 / 18

  20. Observable - random variable • Path x t over [0 , T ] • General observable: x H t L � T � T A T = 1 f ( X t ) dt + 1 g ( X t ) ◦ dX t T T 0 0 t P ( A T = a ) • Large deviation principle (LDP): T = 100 I ( a ) P ( A T = a ) ≈ e − TI ( a ) , T → ∞ T = 50 T = 10 s µ Examples • Occupation time, mean speed, empirical drift • Work, heat, probability current, entropy production • Jump process: current, activity Chetrite Raphael (CNRS) Conditioned processes August 2015 12 / 18

  21. Conditioned process • Path microcanonical ensemble : a , [0 , T ] [ x ] ≡ P ([ x ] / A T = a ) = P [0 , T ] [ x ] δ ( A T [ x ] − a ) P micro P ( A T = a ) • Intermediate : Path Canonical Ensemble k , [0 , T ] [ x ] ≡ P [0 , T ] [ x ] exp ( kTA T ) P cano E P (exp ( kTA T )) • Motivation in Physics for the Thermodynamics of Trajectories : • Conditioned view to Sheared Fluids (M.Evans). • Dynamical Phase transition for Kinetically constrained models (V.Lecomte, F.Van Wijland,...). • Rare trajectories of Glassy phases (D.Chandler, J.P Garrahan...) Chetrite Raphael (CNRS) Conditioned processes August 2015 13 / 18

  22. Conditioned process • Path microcanonical ensemble : a , [0 , T ] [ x ] ≡ P ([ x ] / A T = a ) = P [0 , T ] [ x ] δ ( A T [ x ] − a ) P micro P ( A T = a ) • Intermediate : Path Canonical Ensemble k , [0 , T ] [ x ] ≡ P [0 , T ] [ x ] exp ( kTA T ) P cano E P (exp ( kTA T )) • Motivation in Physics for the Thermodynamics of Trajectories : • Conditioned view to Sheared Fluids (M.Evans). • Dynamical Phase transition for Kinetically constrained models (V.Lecomte, F.Van Wijland,...). • Rare trajectories of Glassy phases (D.Chandler, J.P Garrahan...) Chetrite Raphael (CNRS) Conditioned processes August 2015 13 / 18

  23. Conditioned process • Path microcanonical ensemble : a , [0 , T ] [ x ] ≡ P ([ x ] / A T = a ) = P [0 , T ] [ x ] δ ( A T [ x ] − a ) P micro P ( A T = a ) • Intermediate : Path Canonical Ensemble k , [0 , T ] [ x ] ≡ P [0 , T ] [ x ] exp ( kTA T ) P cano E P (exp ( kTA T )) • Motivation in Physics for the Thermodynamics of Trajectories : • Conditioned view to Sheared Fluids (M.Evans). • Dynamical Phase transition for Kinetically constrained models (V.Lecomte, F.Van Wijland,...). • Rare trajectories of Glassy phases (D.Chandler, J.P Garrahan...) Chetrite Raphael (CNRS) Conditioned processes August 2015 13 / 18

Recommend


More recommend