metal organic frameworks in heterogeneous catalysis
play

Metal-organic frameworks in heterogeneous catalysis Catalysis - PowerPoint PPT Presentation

WIR SCHAFFEN WISSEN HEUTE FR MORGEN Dr. Marco Ranocchiari :: Syncat Group Leader - LSK :: Paul Scherrer Institut Metal-organic frameworks in heterogeneous catalysis Catalysis Lecture 2017 ETH Zurich Catalysis: Heterogeneous vs


  1. WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Dr. Marco Ranocchiari :: Syncat Group Leader - LSK :: Paul Scherrer Institut Metal-organic frameworks in heterogeneous catalysis Catalysis Lecture 2017 ETH Zurich

  2. Catalysis: Heterogeneous vs Homogeneous vs Enzymatic Heterogeneous Homogeneous Enzymatic 
 Engineering flexibility Chemical flexibility Chemical control Selectivity �2

  3. ... Some acronym M O F P C P e 
 o 
 r 
 r 
 o 
 o 
 t 
 r 
 g 
 a 
 l 
 o 
 1) Metal a 
 o 
 a 
 m 
 y 
 r 
 2) Organic l u n e m d 3) Polymer s i w e i 4) Well defined c o r n structure r a 5) Can be porous k t i o n 3

  4. History • Coordination polymers: 1950-1960. • Pioneer work on porous coordination polymers: 1990-1995 by Feréy and Johnson. • The Boost: 1999 by Yaghi (MOF-5). H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature , 1999 , 402 , 276-279 . • Exponential growth of the 
 number of publications over 
 the last decade �4

  5. MOF-5 Organic BB Inorganic Unit Structure Zn 6+ O O Zn O O Zn O Zn O O O Zn Zn MOF-5 Features • Self assembly synthesis (Solvothermal) • Surface area >3000 m 2 /g • Thermal stability: up to 300 °C • Stable upon guest molecules removal • Size of the cavity ∼ 12 Å H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature , 1999 , 402 , 276-279 . 5

  6. ISORETICULARITY AND CAVITY DESIGN O O Linear Geometry O O 6+ Zn FIXED Zn O Zn Zn Organic BB Name Cavity Size O O IRMOF-10 15.4 Å O O O O 13.8 Å IRMOF-14 O O O O IRMOF-16 19.1 Å O O 6 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O. M. Yaghi, Science , 2002, 295 , 469-472.

  7. ISORETICULARITY AND FUNCTIONALIZATION O O Linear Geometry O O 6+ Zn FIXED Zn O Zn Zn MOF-5 or IRMOF-1 cavity size = 11.8 Å Organic BB Name Cavity Size O O IRMOF-3 9.6 Å O O NH 2 O O O 5.8 Å IRMOF-4 O O O 7 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O. M. Yaghi, Science , 2002, 295 , 469-472.

  8. MIXMOFS • Mixing of different organic building blocks into the MOF Organic BB Inorganic Unit Structure O O O O Zn 6+ Zn O O O O Zn O Zn O O Zn O Zn NH 2 O O MIXMOF or O O MTV-MOF Br H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang and O. M. Yaghi, Science , 2010, 327 , 846-850. 8

  9. MOFs Chemical and Structural Flexibility isoreticular chemistry mixMOF chemistry pore tuning multiple functions REFERENCE TOPOLOGY isoreticular chemistry introducing functional groups Deng, H. Science 2010 , 846. Eddaoudi, M. Science 2002 , 469. �9

  10. MOFs Chemical and Structural Flexibility MOF-74 MIL-101 UiO-66 [M 3 X(O)] 6+ [Zr 6 (OH) 4 O 4 ] 12+ [M 2 (H 2 O)] n2n+ M = Cr 3+ , Fe 3+ , Al 3+ M = Co 2+ ,Mn 2+ ,Ni 2+ ,Mg 2+ X = F, Cl, OH- Ferey, G. Science 2005 , 2040. Cavka, J. JACS 2008 , 13850. Rosi, N. L. JACS 2005 , 1504. �10

  11. MOFs as catalytic materials ≡ + [Zn 4 O] 6+ MOF-5 Yaghi O. M. Nature 1999, 276. • solid • Engineering flexibility • fine tunable • Chemical flexibility • well-defined structure • Chemical control at 
 the atomic level • active site resembling the • Selectivity �11 pocket of an enzyme

  12. Post-synthetic Modification Parent Functionalizing Entry Reactant Product Yield (%) MOF group 1 >80 a (R= CH 3 ) 2 N. a. (R= CH=CHCH 3 ) 89 a (R= (CH 2 ) 4 CH 3 ) 3 IRMOF-3 70 a (R= C 6 H 5 ) 4 46 a (R= NHC 6 H 5 ) 5 M M O O 64 a (R= C 6 H 5 ) 6 DMOF-1 R 77 a (R= C 6 H 5 ) 7 UMCM-1 O O O 8 88 (R= CH 3 ) O N R H ! R 9 92 b (R= CH 3 ) O O 10 50 (R= (CH 2 ) 3 CH 3 ) M M 61 b (R= (CH 2 ) 3 CH 3 ) 11 UiO-66 12 25 (R= (CH 2 ) 6 CH 3 ) M M 13 25 (R= CH=CH-COOH) O O 14 34 b (R= CH=CH-COOH) 15 13 (R = 2-OH-C 6 H 4 ) NH 2 3 a (R = 2-OH-C 6 H 4 ) 16 M M IRMOF-3 O O O O 17 >99 b (R = 2-OH-C 6 H 4 ) M M 18 67 (R = CH 3 ) O H M= Zn, Zr, Gd, Al ! 19 MIXMOF-5 >99 b (R = 2-OH-C 6 H 4 ) ! R H ! N R 20 UMCM-1 87 (R= C 5 H 4 N) O O 21 10 (R = 2-OH-C 6 H 4 ) M M UiO-66 22 29 b (R = 2-OH-C 6 H 4 ) 23 99(R= Si(CH 3 ) 3 ) 24 N. r. (R= C(CH 3 ) 3 ) M M O O 25 71 (R= CH 2 CH 3 ) 26 60 (R= (CH 2 ) 2 CH 3 ) O IRMOF-3 R N C O ! 27 51 (R= (CH 2 ) 4 CH 3 ) N NHR H 28 75 (R= CH 2 CH=CH 2 ) O O 29 M M 53 (R= C 6 H 5 ) 30 27 (R= C 6 H 11 ) a conversion of amino containing MOF b vapor-phase post-synthetic modification (VP-PSM) �12

  13. Post-synthetic Modification Parent Functionalizing Entry Reactant Product Yield (%) MOF group Zn Zn Zn Zn O O R O O N N N 1 IRMOF-16 N. a. R N 3 N N N O N 3 R= R O M M M M O O O O 2 DMOF-1 >90 (R= C 6 H 5 ) R N 3 N N N O O O O M M R M M M= Zn, In Zn Zn Zn O Zn O O O R 1 N 3 R 80 (R 2 = CH 2 C 4 H 8 N) 3 Zn-DPYI O HN O Zn O Zn O Zn Zn N R 1 =O N R= O N R 2 Zn Zn N N R 2 R 1 N N 4 Alkyne-MOF R 2 N 3 N. a. N N N Zn Zn R 1 = Si a conversion of functional MOFs �13

  14. Post-synthetic Modification Parent Functionalizing Entry Reactant Product Yield (%) MOF group Zn OH N 1 ZIF-90 NaBH 4 77 (R= CH 2 OH) N Zn Zn O N 2 ZIF-90 HO 80 (R= (CH 2 ) 2 OH) N NH 2 Zn R Zn N N N Zn 3 SIM-1 22 (R= (CH 2 ) 11 CH 3 ) H 2 N 10 Zn Zn Zn Zn O O O O NH 2 HN R NO 2 N 4 IRMOF-9 60 (R= NHC 6 H 4 (NO 2 ) 2 ) CHO NO 2 O O O O Zn Zn Zn Zn Zr Zr Zr Zr O O O O CuCN/ 95 a 5 UiO-66 KCN Br N O O O O Zr Zr Zr Zr a conversion of MOFs �14

  15. Post-synthetic Modification Parent Functionalizing Entry Reactant Product Yield (%) MOF group Zn Zn Zn Zn O O O O O 1 IRMOF-3 N. a. N O N H H Br O O O O Zn Zn Zn Zn Zn Zn Zn Zn Br 2 O O O O 2 Zn 4 O(SDC) 3 Br N. a. Br O O O O Zn Zn Zn Zn �15

  16. Post-synthetic Modification �16

  17. Post-synthetic Modification �17

  18. Post-synthetic Modification Fe H Si O O Al Al Al Al Al Al Al Al O O O O O O O O Fe Si 65°C, 10 -3 mbar, 72h O O O O O O O O Al Al Al Al Al Al Al Al MIL-53(Al) �18

  19. Post-synthetic Modification �19

  20. Post-synthetic Modification �20

  21. Post-synthetic Modification �21

  22. Application of MOFs • Gas storage • Gas purification • CATALYSIS • Non-linear optics • Material science (Magnetic and Luminescent MOFs) 22

  23. Properties of MOFs • Solvothermal self-assembly synthesis • High geometric regularity (single crystals XRD) • No limit in pore size (so far the maximum is 38 Å) • Design of the structure (?) • CHEMICAL VERSATILITY • Limited thermal and chemical stability • Issues on stability upon removal of the solvent in the cages • Possible sensitivity to air/moisture 23

  24. MOF Catalytic Properties Pores Encapsulation Particle deposition Organic linker Ship-in-a-bottle Functional sites Post-synthetic modification Inorganic unit Coordinatively unsaturated sites Grafted molecules Semiconductor/photocatalysis Ranocchiari, M. PCCP 2011 , 6388. Kapteijn, F. ACS Catal. 2014 , 361. �24

  25. Catalysis by MOFs • Catalytic site on the framework 
 (also zeolites and porous silicates and aluminosilicates) • Encapsulation of the active site within the pore structure 
 (also zeolites and porous silicates and aluminosilicates) • Catalytic site produced by post- synthetic modification 
 (also porous silicates and aluminosilicates) 25

  26. Catalytic site on the framework • No change in oxidation • Basic activity state Knövenagel condensation of O benzaldehyde with H 2 O O Cyanosylilation of Cu O ethyl cyanoacetate O Cu O carbonyl groups O O OH 2 O IRMOF-3 • Metal-porphyrin MOF H Friedel–Crafts L n M O ML n reactions M = Ga, Cr, Zn OOC COO • Change in oxidation state N Epoxidation of Mn N Mn N olefins [Pd(2-pymo) 2 ] n N Cross-Coupling reaction N O - OOC COO 2-pymo = N �26

  27. Incapsulation of the active site • Cu@MOF-5 • [PW 11 TiO 40 ] 5- @MIL-101 Synthesis of methanol from syngas • Pd@MOF-5 Hydrogenation of cyclooctene oxidation of 
 α -pinene Leaching might be an issue �27

  28. Catalysis by post-synthetic modification Asymmetric Catalysis N N Alkylation of aldehydes Cl Cl with Et 2 Zn 
 CdCl 2 Ti(OiPr) 4 OH OiPr O (up to 93% ee) O Ti OH OiPr Cl Cl N N �28

  29. Zeolites, MOFs, and mesoporous aluminosilicates Table 1 Comparison between the structural, physical, and chemical properties of zeolites, mesoporous silica and alumina, and MOFs Zeolites MOFs Mesoporous silicates and aluminosilicates Crystalline? Yes Yes No Homogeneous active sites? Yes Yes No o 600 m 2 g � 1 Up to 10 400 m 2 g � 1 a o 2000 m 2 g � 1 Surface area Up to 4 nm a Cavity size r ca. 1 nm Z 2 nm Di ff usivity Low Low to high High Low to medium b Thermal stability High Medium Chemical stability High Variable High Chemical versatility Low High Medium-low a Maximum value published at the moment of this publication. b Maximum value published at the moment of this publication: 540 1 C. �29

  30. Catalysis by Porous Solids �30

Recommend


More recommend