low frequency noise in advanced mos transistors
play

Low Frequency Noise in Advanced MOS Transistors Chia Yu Chen - PowerPoint PPT Presentation

Low Frequency Noise in Advanced MOS Transistors Chia Yu Chen Department of Electrical Engineering Stanford University UC Berkeley EE298 12 Solid State Technology and Device Seminar 2010 11 19 Motivation Low Frequency Noise becomes


  1. Gate bias • Dual ‐ channel behavior 0.006 Si/SiGe/Si p-HMOS Surf. charge Charge Density ( C/m 2 ) 1 E -1 8 S i: T C A D S i: T C A D Buried charge S i: m e a s . S i: m e a s . 1 E -1 7 S i/S iG e /S i: T C A D S i/S iG e /S i: T C A D Vd=-0.1V 1 E -1 9 S i/S iG e /S i: m e a s . 0.004 S i/S iG e /S i: m e a s . S id (A 2 /Hz) Sid ( A2/Hz ) 1 E -1 8 1 E -2 0 W /L = 1 0 u m /1 u m 1 E -1 9 W /L = 1 0 u m /1 u m 1 E -2 1 0.002 V d = -0 .5 V V d = -0 .5 V |V g |-|V th |= 0 .3 V V o v = 2 V 1 E -2 2 1 E -2 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 F re q u e n c y (H z ) F re q u e n c y (H z ) 0.000 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 Gate voltage (V) – When buried channel dominant LF noise is reduced. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 35

  2. Gate bias • V g dependence Δμ 1E-7 SiGe p-HMOS Number fluc. 1E-8 Mobility fluc. Total noise S id /I d2 (1/Hz) 1E-9 Measurements Vd=-0.1V 1E-10 Δ N 1E-11 Δ N 1E-12 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 Gate Voltage (V) – Weak inversion: Δμ – Medium/strong inversion: Δ N 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 36

  3. Gate bias • I d dependence -7 7 10 10 Δμ SiGe p-HMOS -8 6 10 10 Vd=-0.1V -9 5 10 10 S id /I d2 ( 1/Hz ) ( gm/Id ) 2 (V -2 ) -10 4 10 10 Δ N -11 3 10 10 -12 2 10 10 -13 1 10 10 -14 0 10 10 -15 -1 10 10 -16 -2 10 10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 Drain Currrent (A) – Weak inversion: Δμ – Medium/strong inversion: Δ N 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 37

  4. Outline • Introduction • Methodology • SiGe channel  Device schematic  Gate bias  Body bias • Size effect • Conclusions 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 38 38

  5. Body bias • SiGe p ‐ HFET SiGe p-HMOS Vov=-0.3V 1E-20 Vd=-0.5V reverse S id (A 2 /Hz) 1E-21 1E-22 TCAD Mea. Vb=-0.4V Vb=-0.4V Vb=-0.2V Vb=-0.2V forward Vb=0V Vb=0V 1E-23 Vb=0.2V Vb=0.2V 10 100 1000 Frequency (Hz) SISPAD 2007, C. ‐ Y. Chen – LF noise in SiGe p ‐ HFET has strong body bias dependence. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 39

  6. Body bias • SiGe p ‐ HFET Si/SiGe/Si p-HM OS Hole density (cm -2 ) TCA D sim ulation 1E15 Surf.Buried Surf.Buried Vov=-0.3V 1E14 Vd=-0.5V Si cap layer SiGe channel 1E13 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 forward Body bias (V) reverse – Body bias changes carrier distribution in dual channels T ‐ ED 2008, C. ‐ Y. Chen 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 40

  7. Body bias • SiGe p ‐ HFET Surface carrier density (cm -2 ) 1E16 Si/SiGe/Si p-HM OS Vov=-0.3V 1E-20 Vd=-0.5V Sid (A2/Hz) 1E15 less noisy more noisy 1E-21 Si cap layer hole density Sim ulated Sid M easured Sid 1E-22 1E14 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 forward Body bias (V) reverse – FL noise is mainly from surface channel. T ‐ ED 2008, C. ‐ Y. Chen 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 41

  8. Body bias • Si p ‐ FET TCAD Mea. V b =-0.4V V b =-0.4V V b =-0.2V V b =-0.2V 1E-19 V b =0V V b =0V S id (A 2 /Hz) V b =0.2V V b =0.2V reverse Si pMOS 1E-20 Vov=-0.3V Vd=-0.5V 1E-21 forward 10 100 1000 Frequency (Hz) SISPAD 2007, C. ‐ Y. Chen – Si p ‐ MOS does not show body bias dependence. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 42

  9. Outline • Introduction • Methodology • SiGe channel • Size effect  Device schematic  Mechanism  Gate bias • Conclusions 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 43 43

  10. Device schematic • Scaled MOSFETs (small gate area) Cross view Top view L/W=40nm/70nm α oxide thickness~2.5nm Devices from G ‐ foundries – Only a few traps are involved. – Δ N predicts RTN; Δμ shows 1/f noise. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 44

  11. Outline • Introduction • Methodology • SiGe channel • Size effect  Device schematic  Mechanism  Gate bias • Conclusions 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 45 45

  12. Mechanism • Ig ‐ / Id ‐ RTN Ig A few trap/de ‐ trap Time G s D Id N+ N+ Time – Two types: Ig ‐ RTN and Id ‐ RTN. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 46

  13. Mechanism • Where are traps? 320 High-k metal gate nMOSFET (HfO2/TiN) 2 /Vs) 280 Electron mobility (cm 240 SiON 200 xx x 160 HfO 2 channel 120 gate 0.4 0.8 1.2 1.6 2.0 2.4 Interfacial layer thickness (nm) – Traps should be inside high ‐ κ oxide. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 47

  14. Mechanism • Trap/de ‐ trap charge trap charge de-trap (capture) (emission) 7.40E-012 I g (A) 7.20E-012 7.00E-012 Ef Et trapped de-trapped state state 1.60E-006 I d (A) 1.58E-006 1.56E-006 Track each other 0 10 20 30 Time (s) and TAT increase  I d – Capture: V th and I g and TAT decrease  I d – Emission: V th and I g 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 48

  15. Mechanism • PBTI and RTN 1E-5 1E-7 Id (A) or Ig (A) Before stress Id Positive stress Negative stress 1E-9 Ig 1E-11 1E-13 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Vg (V) – Consistent with RTN results. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 49

  16. Outline • Introduction • Methodology • SiGe channel • Size effect  Device schematic  Mechanism  Gate bias • Conclusions 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 50 50

  17. Gate bias • I g ‐ RTN Vg=1V - 1 1 6 .4 x 1 0 - 1 1 6 .0 x 1 0 - 1 1 5 .6 x 1 0 Ig (A) - 1 1 5 .2 x 1 0 Vg=0.9V Ef - 1 1 3 .6 x 1 0 Et - 1 1 3 .2 x 1 0 - 1 1 2 .0 x 1 0 Vg=0.8V - 1 1 1 .8 x 1 0 - 1 1 1 .6 x 1 0 0 5 1 0 1 5 2 0 2 5 Time (s) – V g increases: Time in high ‐ I g state increases. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 51

  18. Gate bias • I d ‐ RTN: Low Vg 2.30E-009 1E-19 2.25E-009 1E-20 Sid (A2/Hz) 2.20E-009 1/f 1E-21 Id (A) 2.15E-009 Vg=0.2V 1E-22 Vd=20m V 2.10E-009 Scaled nMOSFET 1E-23 L=50nm Vd=10mV Vg=0.2V 2.05E-009 W =70nm 1E-24 150 155 160 165 170 0.01 0.1 1 10 Time (s) Frequency (Hz) – Measurement still shows 1/f noise; Δμ model is dominant. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 52

  19. Gate bias • I d ‐ RTN: High gm bias condition 1E-15 Vd=10m V Vg=570m V 4.80E-007 1E-16 4.75E-007 Sid (A2/Hz) 1E-17 Vd=10m V Id (A) 1/f2 4.70E-007 Vg=570m V 1E-18 Scaled nM OSFET L=50nm 4.65E-007 1E-19 W =70nm 1E-20 4.60E-007 0.1 1 10 20 25 30 35 Tim e (s) Frequency (Hz) – RTN and Lorentzian shape are observed in high gm region. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 53

  20. Gate bias • I d ‐ RTN: High Vg 8.42E -007 V d=10m V V g=750m V 8.40E -007 1E-16 8.38E -007 Sid (A2/Hz) 1E-17 8.36E -007 Id(A) 8.34E -007 Vd=10m V 1/f 1E-18 8.32E -007 Vg=750m V 8.30E -007 1E-19 Scaled nM O SFET 8.28E -007 L=50nm 1E-20 W =70nm 8.26E -007 0 10 20 30 40 0.1 1 10 Frequency (Hz) Tim e (s) – 1/f noise is shown in a very scaled MOSFET: Δμ is dominant. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 54

  21. Gate bias • I d ‐ RTN: summary Δ N -6 2.0x10 Vd=10mV -6 Scaled nMOS 1.6x10 RTN L/W=50nm/70nm gm (1/ohm) -6 1.2x10 -7 8.0x10 1/f -7 4.0x10 0.0 -0.4 0.0 0.4 0.8 1.2 Δμ Δμ Vg (V) 1/f – RTN should be considered especially in high gm region. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 55

  22. Gate bias Sid/Id 2 • I d ‐ RTN: summary Δ N Lorentzian -6 2.0x10 Vd=10mV 1/f -6 Scaled nMOS 1.6x10 L/W=50nm/70nm gm (1/ohm) -6 1.2x10 Freq Sid/Id 2 -7 8.0x10 Sid/Id 2 -7 4.0x10 1/f 1/f 0.0 -0.4 0.0 0.4 0.8 1.2 Δμ Δμ Vg (V) Freq Freq – RTN should be considered especially in high gm region. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 56

  23. Outline • Introduction • The origin of LF noise • Methodology • SiGe channel • Size effect • Conclusions  Summary  Contributions  Future work 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 57 57

  24. Summary Bias SiGe H ‐ MOS (Lg~1um) Scaled MOS (Lg~40nm) Δμ Δμ Weak inversion model is dominant. model is dominant. Δ N model is important; Δ N model becomes High gm region (~ V dd /2) LF noise is mostly surface important; RTN should be effect. considered. Δ N is dominant in our Δμ model is dominant High V g condition device, but in general it can be technology dependence. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 58

  25. Summary Δ N model and (2) Δμ  The origin of LF noise: (1) model.  Methodology: TCAD simulations and noise measurements  SiGe channel: Dual ‐ channel is important to explain the low frequency noise performance.  Size effect: I g ‐ RTN is directly related to physical trapping or de ‐ trapping and the I d ‐ RTN reflects sensitivity to charge trapping as determined by g m .  CMOS scaling: provides a new opportunity for LF noise study. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 59

  26. Contributions  Detailed LF noise mechanisms in SiGe p ‐ HFET are proposed.  LF noise mechanisms in scaled MOSFETs are measured and analyzed. Other parts: (1) LF noise mechanisms in high ‐ κ  MOSFET, (2) A LF noise compact model in SiGe p ‐ HFET, (3) linearity of asymmetric channel doping for LDMOS, (4) linearity in GaN HEMTs, and (5) asymmetric FET scaling. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 60

  27. Future work Rethink “device noise” “distortion” and “reliability” 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 61

  28. Publications [1] C. ‐ Y. Chen , Q. Ran, H. ‐ J. Cho, A. Kerber, Y. Liu, M. ‐ R. Lin, and R. W. Dutton, IRPS, 2011. [2] C. ‐ Y. Chen , C. ‐ C. Wang, Y. Ye, Y. Liu, Y. Cao, and R. W. Dutton, SASIMI, 2010. [3] C. ‐ Y. Chen , O. Tornblad, R. W. Dutton, IEEE Trans. on Microwave Theory and Techniques , Dec. 2009. [4] C. ‐ Y. Chen and R. W. Dutton, IEEE Design & Test of Computers , 2009. [5] C. ‐ Y. Chen , Y. Liu, J. Kim, R. W. Dutton, SISPAD 2009, Sept. 2009. [6] C. ‐ Y. Chen , O. Tornblad, R. W. Dutton, IEEE MTT ‐ S International Microwave Symposium Dig. (IMS), pp. 601 ‐ 604, 2009. [7] C. ‐ Y. Chen , Y. Liu, R. W. Dutton, J. Sato ‐ Iwanaga, A. Inoue, H. Sorada, SASIMI 2009, Sapporo, Japan, pp. 405 ‐ 409, March 2009. [8] C. ‐ Y. Chen , Y. Liu, R. W. Dutton, J. Sato ‐ Iwanaga, A. Inoue, H. Sorada, IEEE Trans. Electron Devices , July, 2008. [9] J. Kim, C. ‐ Y. Chen and R. W. Dutton, Journal of Computational Electronics, Jan. 2008. [10] C. ‐ Y. Chen , Y. Liu, R. W. Dutton, J. Sato ‐ Iwanaga, A. Inoue, H. Sorada, SASIMI , Sapporo, Japan, pp. 238 ‐ 241, Oct. 2007. [11] C. ‐ Y. Chen , Y. Liu, R. W. Dutton, J. Sato ‐ Iwanaga, A. Inoue, H. Sorada, Workshop on Compact Modeling (WCM) 2007 , San Jose, USA, March 2007. [12] J. Kim, C. ‐ Y. Chen , R. W. Dutton, SISPAD , Nov. 2007. [13] J. Kim, C. ‐ Y. Chen , R. W. Dutton, Proc. of 12th International Workshop on Computational Electronics (IWCE) , Oct. 2007. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 62

  29. Backup: Linearity analysis of lateral channel doping in RF power MOSFETs Chia ‐ Yu Chen Department of Electrical Engineering Stanford University UC Berkeley EE298 ‐ 12 Solid State Technology and Device Seminar 2010 ‐ 11 ‐ 19

  30. Backup: Outline • Introduction • Quasi ‐ 1D structure • Realistic LDMOS structure • Conclusions Slide 64

  31. Backup: Introduction (1 of 2) Linearity: ω ω Low distortion is one of the most important concerns for wireless communication systems. Analysis of the distortion generated by the device itself has been fairly limited. Slide 65

  32. Backup: Introduction (2 of 2) Harmonic balance device simulations: A unique harmonic balance (HB) device simulator with the capability of including external circuitry is used. In the HB simulations, variations in device parameters are directly reflected in the final large signal RF performance. Slide 66

  33. Backup: Quasi ‐ 1D structure (1 of 3) Device schematic: 0.5um gate length, 30nm oxide thickness. -3 uniform 8e16 cm Avoid 2D-effects. -3 1E18 uniform 2e17 cm Channel doping (cm -3 ) char. length 0.2um Very high source and drain char. length 0.3um dopings to avoid compensation effects at source and drain junctions. 1E17 Gate 4 cases: 2 uniform doping and 2 laterally graded. Graded Source Drain channel Test circuit consisting of bias 1E16 doping feeds and blocking capacitors on 0.0 0.1 0.2 0.3 0.4 0.5 input and output. Lateral location (um ) Slide 67

  34. Backup: Quasi ‐ 1D structure (2 of 3) gm3/gm: IM3: -3 uniform 8e16cm -25 -3 uniform 2e17cm -30 char. length 0.3um char. length 0.2um 0 -35 Freq.=10MHz -40 Gm 3 /Gm IM3dBc -45 -50 uniform 8e16cm -3 -55 uniform 2e17cm -3 -60 char. length 0.3um char. length 0.2um -65 1.5 2.0 2.5 3.0 3.5 -1.5 -1.0 -0.5 0.0 Gate voltage (V) Log 10 ( V in ) First data point correlates to Different gm3/gm magnitudes for magnitude of gm3/gm minima. different cases. Shorter char. length / lower Devices were biased at gm3/gm uniform doping: higher IM3 at minima, close to overall best low input power lower IM3 at linearity. high input power. Slide 68

  35. Backup: Quasi ‐ 1D structure (3 of 3) Field distribution: 5 4x10 Graded cases  more uniform -3 unifrom 8e16cm field. Lateral electrical field (V/cm) -3 5 uniform 2e17cm 3x10 char. length 0.3um char. length 0.2um Smaller uniform doping  more 5 2x10 Vg at gm 3/gm m in. uniform field. Vd: 2.0V 5 1x10 Uniform lateral field  better linearity at higher power. 0 0.0 0.1 0.2 0.3 0.4 0.5 Lateral channel position (um ) Slide 69

  36. Backup: Realistic LDMOS (1 of 4) Device schematic (based on Infineon 7 th generation design): Two different lightly doped drain 1 E 2 0 Lateral channel doping ( cm-3 ) regions: optimize on-resistance and breakdown voltage. 1 E 1 9 1 E 1 8 Source doping and lightly doped drain kept the same for all cases. 1 E 1 7 1 E 1 6 Four different lateral grading cases in c h a r. le n g th 0 .0 5 2 5 u m channel, defined through analytical 1 E 1 5 c h a r. le n g th 0 .0 6 2 5 u m expressions. c h a r. le n g th 0 .0 7 2 5 u m 1 E 1 4 c h a r. le n g th 0 .0 9 2 5 u m 0 .4 0 .6 0 .8 L a te ra l c h a n n e l lo c a tio n (u m ) Slide 70

  37. Backup: Realistic LDMOS (2 of 4) gm3/gm: Test circuitry: 1.5 char. length 0.0525um char. length 0.0625um 1.0 char. length 0.0725um char. length 0.0925um 0.5 Gm3/Gm1 0.0 -0.5 -1.0 -1.5 -2.0 6.0 6.3 6.6 6.9 7.2 7.5 Gate voltage (V) Circuitry with internal and external matching and bias. Bias-point at gm3/gm minima. Infineon product PTF210451. Slide 71

  38. Backup: Realistic LDMOS (3 of 4) IM3 at 2.14GHz: -30 -30 char. length 0.0525um char. length 0.0525um char. length 0.0625um char. length 0.0625um char. length 0.0725um char. length 0.0725um char. length 0.0925um char. length 0.0925um -40 -40 Freq. = 2.14GHz Freq. = 2.14GHz IM3dBc IM3dBc -50 -50 -60 -60 20 25 30 35 40 0.0 0.5 IM1 Log10(Vin) Effect of graded doping is significant  the nonlinearities in capacitances will not swamp the studied effects at high frequency. More graded channel profile shows better linearity in the intermediate power regime. Slide 72

  39. Backup: Realistic LDMOS (4 of 4) Vgs shifts from gm3/gm: char. 0.0525um ; shift 50m v Vgs shifts from gm3/gm -30 char. 0.0925um ; shift -30m v minima  IM3 change is char. 0.0525um ; shift 0m v quite sensitive. char. 0.0925um ; shift -100m v Freq. = 2.14G H z -40 IM3dBc Different device designs give different IM3 that cannot be compensated for -50 by simply changing Vgs bias (Idq setting). -60 20 25 30 35 IM 1 Slide 73

  40. Backup: Conclusions • A graded channel has better linearity for intermediate to high powers. By contrast, for increased back ‐ off, the situation is reversed. • Nonlinearities in intrinsic capacitances will not swamp the effect of graded channel doping at high frequency. • The effect of graded channel doping cannot be fully compensated for by adjusting the Idq bias point. • The analysis lays ground ‐ work for RF device optimization for improved linearity. Slide 74

  41. Backup: Additional information (1 of 4) Quasi-1D structure: IdVgs -4 2.0x10 -3 1E-4 unifrom 8e16cm Drain current, linear scale (A/um) -4 1.8x10 -3 unifrom 2e17cm Drain current, log scale (A/um) 1E-5 char. length 0.3um -4 1.6x10 char. length 0.2um 0 1E-6 Vd=2.0V -4 1.4x10 1E-7 -4 1.2x10 Gm 3 /Gm -4 1E-8 1.0x10 -5 8.0x10 1E-9 uniform 8e16cm -3 -5 6.0x10 1E-10 uniform 2e17cm -3 -5 4.0x10 char. length 0.3um 1E-11 -5 2.0x10 char. length 0.2um 1E-12 0.0 0 1 2 3 4 1.5 2.0 2.5 3.0 3.5 Gate voltage (V) Gate voltage (V) Clearly different gm3/gm magnitudes for different cases. Shorter characteristic length and lower doping give larger gm3/gm magnitudes. Devices were biased at gm3/gm minima, close to overall best linearity for many applications. Slide 75

  42. Backup: Additional information (2 of 4) Quasi-1D structure: velocity saturation: -30 0.0 -40 -0.5 Gm3/Gm IM3dBc -50 -1.0 -60 Uniform doping 2e17cm -3 -1.5 Uniform doping 2e17cm -3 w/ Vsat model -70 w/ Vsat model w/o Vsat model w/o Vsat model -2.0 -80 2.6 2.8 3.0 3.2 3.4 3.6 -25 -20 -15 -10 -5 0 5 10 Gate voltage (V) IM1 When Vsat model is not included: 1. gm3/gm shifts to a smaller magnitude. 2. IM3 is much lower, both initially and for high powers. Slide 76

  43. Backup: Additional information (3 of 4) Realistic LDMOS: IM3 at 10MHz -30 -30 Freq.=10MHz Freq.=10MHz -35 -35 -40 -40 -45 -45 IM3dBc IM3dBc -50 -50 char. length 0.0525um char. length 0.0525um -55 -55 char. length 0.0625um char. length 0.0625um char. length 0.0725um char. length 0.0725um -60 -60 char. length 0.0925um char. length 0.0925um -65 -65 -10 -5 0 5 10 15 20 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 IM1 Log10(Vin) First, separate nonlinearities in static IV from capacitive effects  low freq. 10MHz. More graded channel profile shows better linearity in intermediate power regime. Slide 77

  44. Backup: Additional information (4 of 4) Realistic LDMOS: two sweet spots -20 At high power, the compressing Shift -50m V from gm 3/gm m in. non-linearity along the load-line -30 gm 3/gm m in. will dominate; the curves merge. -40 Lower Vgs  two sweet-spots appear. IM3dBc -50 -60 Ids (A) -70 -80 -90 -10 -5 0 5 10 15 20 Vds (V) IM 1 Slide 78

  45. Backup: GaN HEMT structure GaN HEMT structure Lg=0.5um 11/23/2010 GaN HEMT project 79

  46. Backup: Id ‐ Vgs, GaN HEMT TCAD simulation results 0.0012 1E-3 w/o Hydrodynamics w/ Hydrodynamics 0.0010 1E-4 0.0008 Id (A/um) Id (A/um) 0.0006 1E-5 w/o Hydrodynamics w/ Hydrodynamics 0.0004 1E-6 0.0002 0.0000 1E-7 -7 -6 -5 -4 -3 -2 -1 0 1 -5 -4 -3 -2 -1 0 1 Vg (V) Vg (V) 11/23/2010 GaN HEMT project 80

  47. Backup: Gm3/Gm1, GaN HEMT 40 20 Gm3/Gm1 w/o Hydrodynamics w/ Hydrodynamics 0 Gm3/Gm1 min.:Vg=-4.9047V -20 -5 -4 -3 -2 Vg (V) 11/23/2010 GaN HEMT project 81

  48. Backup: Linearity, GaN HEMT 1E-8 Id1 at f1 1E-10 Id3 at 2f1-f2 GaN HEMT Id(A) Vd=28V 1E-12 Vg=-4.91V (Gm3/Gm1 min.) 1E-14 1E-16 0.01 0.1 Vg(V) 11/23/2010 GaN HEMT project 82

  49. Backup: The origin of LF noise • Δ N model Id time: one trap  RTN Time Sid/Id 2 freq.: Δ N Freq Id time: a lot of traps  1/f noise Time Sid/Id 2 freq.: Freq 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 83 83

  50. Backup: Statistics • Statistical results About 12% MOSFETs show RTN: 9% Ig ‐ RTN, 2% I d ‐ RTN, ‐ /I d ‐ RTN. and 1% I g The statistical results are from 1000 devices with the same technology and structures. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 84

  51. Backup: Gate bias • I g ‐ RTN Vg=1V - 1 1 6 .4 x 1 0 - 1 1 6 .0 x 1 0 10 - 1 1 5 .6 x 1 0 Ig (A) - 1 1 5 .2 x 1 0 Vg=0.9V - 1 1 3 .6 x 1 0 1     - 1 1 3 .2 x 1 0 D ev ice 1 0.1 - 1 1 D ev ice 2 2 .0 x 1 0 Vg=0.8V D ev ice 3 - 1 1 1 .8 x 1 0 D ev ice 4 0.01 - 1 1 1 .6 x 1 0 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0 5 1 0 1 5 2 0 2 5 Time (s) V g (V ) – V g increases: Time in high ‐ I g state increases. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 85

  52. Backup: TCAD • I d ‐ RTN: High gm bias condition Trap/de-trap – TCAD simulations confirm the origin of RTN can be from one ‐ trap/de ‐ trap. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 86

  53. Backup: Motivation Integrated sensors Bio ‐ implant system Portable electronics Device Noise Ultra ‐ low power circuits Bio/silicon interfaces Transistor reliability SRAM yield  Noise: key issue for the future electronic system development. 11/09/2010 C. ‐ Y. Chen UCB seminar 87

  54. Backup: Trap distribution (1 of 2) U-shape Energy (eV) L/H H/L Space (um) – Space: from gate to Si can be low-high or high-low. – Energy: distribution is a U-shape in log-scale. R. Jayaraman et al . IEEE T-ED , vol.36, no. 9, pp. 1773-1782, Sept., 1989. H. Wong et al . IEEE T-ED , vol.37 no. 7, pp. 1743-1749, July, 1990. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 88

  55. Backup: Trap distribution (2 of 2) • V g dependence flat ∝ 1/V ov 2 – V g dependence shows flat region in weak inversion regime. – In the U-shape distribution V g dependence is less sensitive compared with uniform distribution. K. K. Hung et al . IEEE T-ED , vol.37, no. 5, pp. 1323-1333, May, 1990. Y. Liu et al . SISPAD 2006 , pp. 99-102, 2006. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 89

  56. Backup: Numerical method (1 of 2) – Physical model – Impedance field method (IMF)     Current fluctuatio n at kth electrode A k r  Injected current at r in the device         2 ( s ) S A r S r dv in [5] A. McWhorter, Semiconductor Surface Physics , PA, Univ. Pennsylvania Press,1957, pp. 207-208. [6] W. Shockley et al., Quantum Theory of Atoms, Molecules and Solid State , NY: Academic, 1966, pp. 537-563. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 90

  57. Backup: Numerical method (2 of 2) • Hooge mobility fluctuation ( Δμ model) – Bulk phonon scattering – Empirical equation – Numerical approach: Post process Hooge model is empirical  the post process with simulated parameters/reasonable α H is used. [7] F. N. Hooge, IEEE T-ED , vol.41, no. 11, pp. 1926-1935, Nov., 1994. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 91

  58. Backup: Unified model (1 of 4) The fluctuating oxide charge density △ Q ox is equivalent to a  variation in the flat-band voltage  The fluctuation in the drain current yields Fluctuation of Num. Fluctuation of correlated mobility  The first term in the parentheses is due to fluctuating number of inversion carriers and the second term to correlated mobility fluctuations. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 92

  59. Backup: Unified model (2 of 4)  The power spectral density of the flat-band voltage fluctuations is calculated by summing the contributions from all traps in the gate oxide. Fermi ‐ Dirac distribution z x y Semiconductor 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 93

  60. Backup: Unified model (3 of 4)  The product f (E)(1- f (E)) is sharply peaked around the quasi- Fermi level  If the Fermi-level is far above or below the trap level, the trap will be filled or empty. All empty f(E) 1-f(E) Fluctuations All filled 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 94

  61. Backup: Unified model (4 of 4) Lorentzian spectrum The trapping time constant (quantum tunneling) Tunneling attenuation length 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 95

  62. Backup: High ‐ κ f=1Hz • Numerical approach High- κ SiON Si f=1e4Hz j Different affinities and tunneling are considered  : 1 × 10 -8 cm SiO 2 : 2. 1 × 10 -8 cm 1/ γ HfO 2 [9] Y. Liu et al . SISPAD 2006 , pp. 99-102, 2006. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar

  63. Backup: Noise scaling (1 of 2) • Scaling trend: general trend – SiO 2 trap density is much smaller than that of HfO 2 . – 1/f noise increases much faster than the thermal noise when size scales down. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 97

  64. Backup: Noise scaling (2 of 2) • Scaling trend: traps at gate edge – High trap density in the gate edge region. – In the scaled devices traps in the gate edge becomes 2 increases significantly. important so S id /I d [14] Y. Yasuda et al., IEEE T-ED , vol.55, no. 1, pp. 417-422, Jan., 2008. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 98

  65. Backup: Halo doping – Halo doping profiles  suppress the short channel effect. – The same amount of electrons  greater Δ I d in halo. – Reduced inversion carrier density in the halo regions. [8] Y. Liu et al . SISPAD 2006 , pp. 99-102, 2006. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 99

  66. Backup: Metal gate + - + - Poly SiGe High- κ (TiN) – The lowering of the 1/f noise: observed in the strong inversion regime. – Traps and charges at the gate dielectric interface: better screened by a metal gate  alleviate remote phonon scattering. [15] E. Simoen et al., IEEE T-ED , vol.40, pp. 2054-2059, 1993. 11/19/2010 C. ‐ Y. Chen UCB EE298 ‐ 12 Seminar 100

Recommend


More recommend