data driven tests for homoscedastic linear regression
play

Data driven tests for homoscedastic linear regression model Tadeusz - PDF document

Data driven tests for homoscedastic linear regression model Tadeusz Inglot and Teresa Ledwina Model and null hypothesis Z = ( X, Y ) random vector in [0 , 1] R, X, independent, distributions of X E f = 0 , = E f 2 (0 , ) ,


  1. Data driven tests for homoscedastic linear regression model Tadeusz Inglot and Teresa Ledwina Model and null hypothesis Z = ( X, Y ) random vector in [0 , 1] × R, X, ǫ independent, distributions of X E f ǫ = 0 , τ = E f ǫ 2 ∈ (0 , ∞ ) , and ǫ unknown, X ∼ g, ǫ ∼ f, H 0 : Y = β [ v ( X )] T + ǫ, β ∈ R q , v ( x ) = ( v 1 ( x ) , ..., v q ( x )) given vector of bounded functions. Overfitting. Auxiliary models M ( k ) , k = 1 , 2 , ... Y = θ [ u ( x )] T + β [ v ( x )] T + ǫ, θ ∈ R k , u ( x ) = ( u 1 ( x ) , ..., u k ( x )) vector of bounded functions lineary independent on v ( x ) . Auxiliary solution Given k and M ( k ) , Y = θ [ u ( x )] T + β [ v ( x )] T + ǫ, θ ∈ R k , we construct efficient score statistic for H 0 ( k ) : θ = 0 , η, η = ( β, √ g, √ f ) - nuisance parameter. ℓ ∗ - k -dimensional efficient score vector, i.e. the residuals from projections [derived under H 0 ( k ) ] of scores for the parameters of interest [ θ 1 , ..., θ k ] onto scores for the nuisance parameters [ η ]; Neyman (1959). � T � n � � n 1 1 � ℓ ∗ ( Z i ; η ) � ℓ ∗ ( Z i ; η ) W k ( η ) = √ n L √ n . i =1 i =1 where � − 1 = L , W k ( η ) D E η [ ℓ ∗ ( Z ; η )] T [ ℓ ∗ ( Z ; η )] � → χ 2 E η ℓ ∗ ( Z ; η ) = 0 , k .

  2. Define � T n n � � � 1 1 ˆ ˆ ˆ � ℓ ∗ ( Z i ; ˆ � ℓ ∗ ( Z i ; ˆ √ n √ n W k (ˆ η ) = η ) L η ) , i =1 i =1 where ˆ η ) is an estimator of ℓ ∗ ( • ; η ) , while ˆ ℓ ∗ ( • ; ˆ L is an estimator of L. Theorem 1. Assume the null hypothesis H 0 ( k ) : θ = 0 is true and some mild extra assumptions are fulfilled. Suppose that ˆ L is a consistent estimator of L and the estimator ˆ ℓ ∗ ( • ; ˆ η ) satisfies the following condition n �� � � � � � ≥ δ √ n � � � � P n � [ˆ ℓ ∗ ( Z i ; ˆ η ) − ℓ ∗ ( Z i ; η )] → 0 � � � � η � � � � � � � i =1 for every δ > 0 , as n → ∞ . Then for the test statistic W k (ˆ η ) it holds that η ) D → χ 2 W k (ˆ k , as n → ∞ . Some class of estimators is proposed for which Theorem 1 holds. Selecting k in W k (ˆ η ) Score-based rule mimicing Schwarz’s BIC S 1 = min { 1 ≤ k ≤ d : W k (ˆ η ) − k log n ≥ W s (ˆ η ) − s log n, s = 1 , ..., d } . Score-based rule imitating Akaike’s AIC A 1 = min { 1 ≤ k ≤ d : W k (ˆ η ) − 2 k ≥ W s (ˆ η ) − 2 s, s = 1 , ..., d } . Refined score-based selection rule [Inglot and Ledwina (2006c)]. � ˆ � n − 1 / 2 � n i =1 ˆ ℓ ∗ ( Z i ; ˆ L 1 / 2 . Then, W k (ˆ η ) = || ( Y 1 , ..., Y k ) || 2 . Define Set ( Y 1 , ... Y k ) = η ) new penalty if max 1 ≤ t ≤ d |Y t | ≤ √ p log n, � s log n, if max 1 ≤ t ≤ d |Y t | > √ p log n, π ( s, p ) = 2 s, where p is some fixed positive number. Then the refined selection rule is given by T 1 = min { 1 ≤ k ≤ d : W k (ˆ η ) − π ( k, p ) ≥ W s (ˆ η ) − π ( s, p ) , s = 1 , ..., d } .

  3. Data driven score test statistics W S 1 (ˆ η ) , W T 1 (ˆ η ) . Asymptotic behaviour under H 0 For simplicity we assumed that d , the number of models on the list, does not depend on n . Theorem 2. Under the null hypothesis H 0 : Y = β [ v ( X )] T + ǫ , the assumptions of Theorem 1 and n → ∞ , it holds that η ) D η ) D P n → χ 2 P n → χ 2 η ( S 1 > 1) → 0 , W S 1 (ˆ 1 , and η ( T 1 > 1) → 0 , W T 1 (ˆ 1 . Example H 0 : Y = β 1 + β 2 X + ǫ. Simulated critical values of W S 1 and W T 1 under the null model Y = 1 + 2 X + ǫ with X uniform on [0,1] and different errors. Sample size n = 300 . 5% significance level, N = 10000 MC runs. p = 2 . 4 . Error Parameter Variance Critical values distribution W S 1 W T 1 G ( σ ) 0.25 0.063 5.91 6.11 0.50 0.250 5.63 5.92 Gaussian 0.75 0.563 5.83 6.04 1.00 1.000 5.79 6.02 L ( ϕ ) 4.00 0.125 5.29 5.57 2.00 0.500 5.27 5.50 Laplace 1.00 2.000 5.75 5.93 0.50 8.000 5.61 5.82 NM ( µ ) 0.20 1.191 5.94 6.08 0.40 1.762 5.67 6.00 Normal Mixture 0.60 2.714 5.81 6.05 0.80 4.048 5.66 5.85

  4. Empirical powers Alternatives: Y = 1 + 2 X + r j ( X ) + ǫ, j = 1 , ..., 4 . Auxiliary models M ( k ) : k � Y = 1 + 2 X + θ j cos([ j + 1] πx ) , k = 1 , ..., 10 . j =1 v ( x ) = (1 , x ) , u ( x ) = (cos(2 πx ) , ..., cos([ k + 1] πx )) . Errors : as described above. Tests for comparison: CvM - Cram´ er-von Mises test, ˆ T - statistic of Guerre and Lavergne (2005). 100 100 ∗ ∗ ∗ ∗ G ( 0 . 25 ) , r 1 ❡ L ( 4 ) , r 2 ❡ ❡ ❡ ∗ 80 80 ❡ ❡ - W T 1 ∗ ❡ ✉ △ ❡ ∗ - W S 1 ❡ ✉ ❡ ❡ ∗ 60 60 ✉ ∗ ❡ ✉ - ˆ T ✉ ✉ ❡ - W T 1 △ - CvM ✉ ∗ ✉ 40 40 ∗ - W S 1 ❡ ∗ ✉ ❡ ✉ ✉ ✉ ✉ ❡ ✉ ✉ power ✉ - ˆ ∗ T ∗ ∗ 20 20 △ - CvM ∗ △ △ △ power △ △ △ △ △ △ △ △ △ △ 0 0 2 3 4 5 6 7 8 2 3 4 5 6 7 8 o s r 1 ( x ) = c × cos( πox ) , r 2 ( x ) = c × L s ( x ) , L s - s th normalized Legendre’s polynomial on [0,1]. Simulated powers of tests based on W T 1 , W S 1 , ˆ T and CvM under the alterna- tives Y = 1 + 2 X + r j ( X ) + ǫ, j = 1 , 2 , X uniform on [0,1] and different errors. Signal/noise 0 . 25 . 5% nominal level, n = 300 , N = 10000 MC runs. p = 2 . 4 .

  5. 100 100 ∗ ❡ - W T 1 L ( 4 ) , r 5 , c = 0 . 15 G ( 0 . 25 ) , r 4 , a = 0 . 3 ❡ ∗ power power ❡ ∗ - W S 1 ∗ ∗ ❡ - W T 1 ❡ 80 80 ∗ ❡ ❡ ✉ - ˆ ∗ T ❡ ∗ - W S 1 ∗ ∗ ❡ △ △ - CvM ❡ ✉ - ˆ 60 60 T ✉ △ ∗ ∗ ❡ △ - CvM ❡ △ 40 ∗ 40 ✉ ❡ ∗ △ ✉ ❡ ✉ △ ✉ ∗ ✉ ❡ ∗ 20 20 ✉ ❡ △ ✉ ✉ △ ✉ ✉ △ △ △ △ ✉ △ △ △ ✉ ✉ 0 0 3 4 5 6 7 8 9 -.40 -.55 -.70 -.85 -1.00 -1.15 -1.30 b c r 5 ( x ) = c × arctan[ b (2 x − 1)] , r 4 ( x ) = c × ( x − a )1 [ a, 1] ( x ). Simulated powers of tests based on W T 1 , W S 1 , ˆ T and CvM under the alterna- tives Y = 1 + 2 X + r j ( X ) + ǫ, j = 4 , 5 , X uniform on [0,1] and different errors. 5% nominal level, n = 300 , N = 10000 MC runs. p = 2 . 4 References Guerre, E., Lavergne, P. (2005). Data-driven rate-optimal specification test- ing in regression models. Ann. Statist. 33, 840-870. Inglot, T., Ledwina, T. (2006a). Data driven score tests for a homoscedastic linear regression model: the construction and simulations. Proc. Prague Stochas- tics 2006 , 124-137. Inglot, T., Ledwina, T. (2006b). Data driven score tests for a homoscedastic linear regression model: asymptotic results. Probab. Math. Statist. , 41-61. Inglot, T., Ledwina, T. (2006c). Towards data driven selection of a penalty function for data driven Neyman tests. Linear Algebra and its Appl. , 579-590. Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypothe- ses. In Probability and Statistics: The Harald Cram´ er Volume (U. Grenander, ed.) 213-234. Wiley, New York.

Recommend


More recommend