controlled growth of mollusc shells quantitative
play

Controlled growth of mollusc shells: Quantitative Crystallographic - PowerPoint PPT Presentation

Controlled growth of mollusc shells: Quantitative Crystallographic Texture Analysis input D. Chateigner - Laboratoire de Cristallographie et Sciences des Matriaux (CRISMAT) - Ecole Nationale Suprieure d'Ingnieurs de Caen (ENSICAEN)


  1. Controlled growth of mollusc shells: Quantitative Crystallographic Texture Analysis input D. Chateigner - Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT) - Ecole Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)

  2. Overlook • Generality on QTA by diffraction • Complex growth of layers: microstructure versus texture • a - and c -axes patterns of aragonitic layers, twinning • QTA: global versus local probes • QTA and Mollusc's Phylogeny • QTA and calcitic fossils • QTA and Mollusc's prothaetics • QTA and mechanical behaviour

  3. Generality on QTA from diffraction

  4. We measure pole figures P hkl , statistical representation of crystallite orientation in a sample frame XYZ: Y=010 dV 1 a = P sin d d β β α hkl V 4 π c β α Z=001 X=100 { α , β , γ } three Euler angles, γ γ accessed by refinement of b the Orientation Distribution Function (ODF) Example for one single crystallite:

  5. Reference frame in mollusc shells • Crystal: CaCO 3 , aragonite (Pmcn) or calcite (R c), for 3 M thousands of crystallites: . G . G N M N

  6. Typical x-ray diffraction pattern Mytilus edulis (common mussel) 600000 inner sheet nacre 121/012 500000 400000 112/022/031 113/141 Intensity 300000 231/023 002 200 130 200000 041/202 132 100000 0 25 30 35 40 45 50 55 60 2 θ °

  7. Crassostrea gigas (common oyster) outer foliated calcite 400000 202 300000 Intensity 122/10 10 124/208/119 113 200000 104 110 018/024 300 116 121 100000 215 0 25 30 35 40 45 50 55 60 65 70 2 θ ° Measured for around 1000 sample orientations, using x-rays, neutrons or electrons, depending on the desired probed volume

  8. ODF-reliability (x-rays: point detector): Helix pomatia (Burgundy land snail: Outer com. crossed lamellar)

  9. Complex growth of shell layers: microstructure versus texture

  10. Microstructure versus texture Inner sheet nacre of Anodonta cygnea (river mussel): no intra-mineral epitaxy 100 010 001 20 µ m N a, - 45 ISN ∗ ⊥ 25 G

  11. Microstructure versus texture Bathymodiolus thermophilus (-2400m deep mussel): no inter-mineral epitaxy 100 001 c, 0 , 90 OFC ∠ Ι 10 µ m N 001 100 a, 90 ISN ∗ G ⊥ 38

  12. Microstructure versus texture Euglandina sp.: different crystallite shapes, close orientations ! 001 100 a, 75 ORCL I ⊥ 100 µ m 001 100 N a, 80 ICCL I ⊥ G

  13. Microstructure versus texture Inner sheet nacre of Cypraea testudinaria (cowry): no inter-layer epitaxy Organically driven growth

  14. Microstructure versus texture Cyclophorus woodianus : different crystal orientations look like single crystal from diffraction ! 20 µ m 100 001 100 µ m N a, 20 IRCL I ⊥ G Texture parameters may deserve phylogenic analysis

  15. a - and c -axes patterns of aragonitic layers, twinning

  16. c -axes texture patterns Nerita Fragum Cypraea Pinctada polita fragum testudinaria maxima ICCL ICCL ICCL ISN “polished “cockle” “turtle “gold pearl nerite” cowry” oyster” ⊥ ∠ ∀ ∨

  17. a -axes texture patterns Tectus Conus Nautilus Helix niloticus leopardus pompilius pomatia ICN ICCL ICN OCCL “commercial “leopard “new caledonia “burgundy top shell” cone” nautilus” land snail” * r | £ Chateigner, Hedegaard, Wenk, J. Struct. Geol. 22 (2000) 1723-1735

  18. Twinning in aragonite ... α (110) Domain II Domain I a b α = 2 arctan(a/b) = 63.8°

  19. … forms nacre platelets ... 1 1 ( 10) (110) ( 10) (110) ? ? Bragg, 1937 Mutvei, 1980

  20. … that rearrange ... >100 16 1 1 Pinctada margaritifera Haliotis cracherodi (black pearl oyster) (black abalone)

  21. QTA: global versus local probes Neutrons or x-rays: global approach Electrons: local, like with EBSD

  22. Crassostrea gigas (common oyster: Inner foliated calcite) Electrons Kikuchi diagrams x-rays Global analysis is coherent with local ones like synchrotron microfocus x-rays (Aizenberg, J. et al. (1996) Connective Tissue Research 34(4), 255-261)

  23. QTA and Mollusc's Phylogeny From 70 mollusc species (gastropods, bivalves and cephalopods), around 150 layers studied In collaboration with C. Hedegaard ( DGB Aarhus, Denmark ) and H.- R. Wenk (DEPS Berkeley , USA )

  24. Closely related species, close textural characters, but significant variations: textural parameters can serve character analysis a, 20 ISN ∗ Atrina maurea ⊥ 44 a, 95 ISN ∗ Pinna nobilis ⊥ 25 a, 90 ISN ∗ ⊥ Lampsilis alatus 25 110 , 15 ICCL < > ∀ × Fragum fragum 50 110 , 15 ICCL < > Glycymeris gigantea ∀ × 50 110 , - 15 , 10 ICCL < > ∨ × Spondylus princeps 50 ICCL O , 20 OSiP O ⊥ ∠ Bivalvia Paphia solanderi a, 90 ISN ∗ ⊥ Neotrigonia sp. 12 a, 90 ISN ∗ ⊥ Pinctada margaritifera 8 a, 90 ISN ∗ ⊥ Pinctada maxima 14 a, - 30 ISN ∗ ⊥ Pteria penguin 15

  25. Phylogenic interest: nacre = ancestral (Carter & Clarck, 1985) 19 events

  26. nacre not ancestral 9 events

  27. QTA and calcitic fossils In collaboration with L. Harper ( DESC Cambridge, UK ) and M. Morales ( LERMAT-ENSICAEN, France )

  28. Pinnoid and Pterioid prismatic layers Pinna nobilis c-axes // N a-axes at random Pteria penguin

  29. Mussels prismatic layers Mytilus edulis c-axes ∠ N a-axes single-crystal like c-axes ⊥ N, // G Bathymodiolus thermophilus

  30. Scallop and trichite prismatic layers Amussium parpiraceum (scallop) c-axes ⊥ N, // G a-axes single-crystal like Trichites (fossil) c-axes ∠ N a-axes random

  31. Texture Analysis results F 2 Layer ODF ODF min RP0 RP1 c-axis a-axis {001} Max - S (mrd 2 ) type Max (mrd) (%) (%) (mrd) (mrd) Pinna nobilis OP 303 0 50 29 // N random 68 29 2.3 Pteria penguin OP 84 0 29 15 // N random 31 13 1.9 Amussium OP 330 0 53 33 // G <110> // 20 31 2.6 parpiraceum M Bathymodiolus OP 63 0 25 18 // G // M 27 13 1.9 thermophilus Mytilus edulis OP 207 0 41 25 75° <110> // 23 21 2.2 from N M Trichites P 390 0 52 28 15° random 56 41 2.2 from N Crassostrea gigas IF 908 0 45 31 35° // M >100 329 5.1 from N No DNA is available on fossils like in Trichites, but Trichite's textural parameters are close to the ones of pinnoids or pterioids : interesting for the classification of extinct species c Chateigner, Morales, Harper, Materials Science Forum, 408-412 , 2002, 1687-1692

  32. QTA and Mollusc's prothaetics

  33. Pinctada margaritifera and P. maxima nacres: Bio-compatible and bio-inductive layers for rabbit bones (E. Lopez (MNHN, Paris) a, 20 ISN ∗ Atrina maurea ⊥ 44 a, 95 ISN ∗ Pinna nobilis ⊥ 25 a, 90 ISN ∗ ⊥ Lampsilis alatus 25 110 , 15 ICCL < > ∀ × Fragum fragum 50 110 , 15 ICCL < > Glycymeris gigantea ∀ × 50 110 , - 15 , 10 ICCL < > ∨ × Spondylus princeps 50 ICCL O , 20 OSiP O ⊥ ∠ Bivalvia Paphia solanderi a, 90 ISN ∗ ⊥ Neotrigonia sp. 12 a, 90 ISN ∗ ⊥ Pinctada margaritifera 8 a, 90 ISN ∗ ⊥ Pinctada maxima 14 P. Margaritifera a, - 30 ISN ∗ ⊥ Pteria penguin 15

  34. QTA and mechanical behaviour

  35. C ijkl (Gpa) P waves Single crystal (Gpa) 251 151 151 151 251 151 151 151 251 123 123 123 CoNi alloy 298 127 126 -0. 0. -2 127 305 118 0. 0. -1 126 118 307 -0. -0. 3 -0. 0. -0 78 2.8 0. 0. 0. -0 2 85 -0. -2 -1 3 0. -0. 86 Simulation QTA + Geometric Mean

  36. Some conclusions • Shells exhibit a large variety of texture patterns, in their aragonite and calcite layers • Textural parameters are similar for close species, different for distant species, they confirm organically driven growth and refute mineral epitaxy • Texture and microstructure analyses give non- redundant information in shells • “Texture” characters can be relevant for classification and phylogenetic interpretation, either for living or extinct species • Texture may serve as a tool to predict bio-compatible species, and mechanical behaviours of shells

Recommend


More recommend