aim application on ghg stabilization scenarios
play

AIM application on GHG stabilization scenarios Workshop on GHG - PDF document

AIM application on GHG stabilization scenarios Workshop on GHG Stabilization Scenarios Tsukuba, Japan on January 22-23, 2004 Yuzuru MATSUOKA Kyoto University, Japan and Mikiko KAINUMA National Institute for Environmental Studies, Japan


  1. AIM application on GHG stabilization scenarios Workshop on GHG Stabilization Scenarios Tsukuba, Japan on January 22-23, 2004 Yuzuru MATSUOKA Kyoto University, Japan and Mikiko KAINUMA National Institute for Environmental Studies, Japan Matsuoka and Kainuma 1 AIM model family AIM/Topdown (Global Energy, Land-use and Economic models) AIM/Enduse AIM/Country AIM/Local AIM/IMPACT Global version AIM-Linkage Country version AIM/Material •AIM is composed with various models and AIM/CLIMATE connected with hard/soft Atmospheric model linkage UD Ocean model Radiative forcing model •Global, Country and regional GCM,RegCM interface versions exist •Developed and supported by International collaborating teams in Asian countries Matsuoka and Kainuma 2 1

  2. AIM model family AIM/Topdown (Global Energy, Land-use and Economic models) AIM/Enduse AIM/Country AIM/Local AIM/IMPACT Global version AIM-Linkage Country version AIM/Material •Bottom-up type engineering AIM/CLIMATE models Atmospheric model UD Ocean model •Japan, China, India, Korea, Radiative forcing model and other Asian country GCM,RegCM interface studies and regional studies •Coupled with county level high resolution emission inventories Matsuoka and Kainuma 3 AIM model family AIM/Topdown (Global Energy, Land-use and Economic models) AIM/Enduse AIM/Country AIM/Local AIM/IMPACT Global version AIM-Linkage Country version AIM/Material •A model which couples economic AIM/CLIMATE CGE approach and engineering Atmospheric model UD Ocean model bottom-up approach Radiative forcing model •One regional model for a country GCM,RegCM interface environment, energy, and material problems • Applied to Japan, China, and India Matsuoka and Kainuma 4 2

  3. AIM model family AIM/Topdown (Global Energy, Land-use and Economic models) AIM/Enduse AIM/Country AIM/Local AIM/IMPACT Global version •Combined models for AIM-Linkage Country version AIM/Material analyzing Global long- term climate stabilization scenarios AIM/CLIMATE •Soft link with Atmospheric model UD Ocean model AIM/Enduse, Radiative forcing model AIM/Material, and GCM,RegCM interface detailed climate models, e.g. GCM and RegCM Matsuoka and Kainuma 5 Abstract of AIM/Topdown Abstract of AIM/Topdown • Type: Multi-regional, multi sector CGE, sequential equilibrium • Programmed with GAMS/MPSGE • Year period: 1990-2100 • Regions: 21 regions • Production Sectors: 13 sectors • Energy depletion, electricity mix • Several extended and modified version are developing, e.g. AIM/CGE(Asia). Matsuoka and Kainuma 6 3

  4. Structure of AIM/Topdown Some features CO 2 input CO 2 input � Simple cohort Fuel Power structure of stocks sectors generation � Investments are Non-energy input sectors determined with rate Sectors input of return and input previous preference consumption � Logit type share Production Sectors preference of energy investment consumption t in order to keep n CO 2 e r energy balance in trade and market Government emission carbon electricity production right by various generation CO 2 methods primary � Resource vs. cost Household factors functions are supplied for each region Matsuoka and Kainuma 7 Regional Aggregation of AIM 21 regions JPN Japan AUS Australia NZL New Zealand CAN Canada USA United States of America EUR West Europe FSU Former Soviet Union CHN China HKG Hong Kong IDI India MEA Middle East and North Africa KOR Republic of Korea TWN Taiwan SGP Singapore IDN Indonesia MYS Malaysia PHL Philippines THA Thailand LAM Latin America SSA Sub Saharan Africa ROW Rest of the World Matsuoka and Kainuma 8 4

  5. Sectors in AIM/Topdown Sectors in AIM/Topdown 13 production sectors and 8 production sub- sectors, 2 final demand sectors 1 COL Coal production 8 AGR Agriculture 2 GAS Natural gas production 9 FRS Forestry 3 CRU Crude oil production 10 LVK Livestock 4 OIL Refined oil products 11 EIS Energy Intensive Industries 5 RNW Renewable energy supply 12 OTH Other Industries 6 ELE Electricity and heat 13 SER Service production with oil, coal, gas, hydo, nuc, solar, biomass subsectors 7 TRN Transport Matsuoka and Kainuma 9 Assumptions for experiments • Regional population and GDP changes follow SRES B2 • Global CO 2 emission to achieve 450, 550 and 650 ppm stabilization after 2150, calculated with AIM/SSG • Contraction and Convergence approach for burden sharing, i.e. -Per capita CO 2 emission convergence after 2050 -Annex B: Kyoto protocol till 2012 and start convergence linearly to 2050 target -Non annex B: After 2015, each region joins convergence when the emission surpasses the per capita CO 2 emission permit -Carbon trade market is opened for capped regions Matsuoka and Kainuma 10 5

  6. Climate and Impact modules of this calculation • CO 2 concentration with AIM/SSG (Stabilization Scenario Generator): Simplified carbon cycle model based on Joos model • Radiative forcing expression based on IPCC report (WG1, 2001) • Upwelling diffusion model for energy balance • Spatial pattern scaling of climate change with IPCC/DDC’s GCM library • Country level aggregated version of AIM/Impact for impact analysis Matsuoka and Kainuma 11 Frame of impact estimation Global mean Emission scenarios Country-wide impact temperature changes 25 3.0 3.0 Global mean temperature increase -100 -100 -100 2.5 2.5 -90 -90 -90 Change of productivity (%) Change of productivity (%) 20 AIM/Climate Reference Reference 2.0 2.0 -80 -80 -80 CO2 Emission (GtC) relative to 1990 value ( o C) WRE 550 WRE 550 -70 -70 -70 1.5 1.5 WRE550 15 -60 -60 -60 WGI550 WGI 550 WGI 550 1.0 1.0 -50 -50 -50 MID550 -40 -40 -40 MID 550 MID 550 10 0.5 0.5 REF -30 -30 -30 0.0 0.0 -20 -20 -20 -10 -10 -10 5 -0.5 -0.5 0 0 0 M M C C M M a a y y P P m m a a -1.0 -1.0 T T h h a a l l b b n n m m L L h h i i a a o o 0 B B a a a a l i l i y y d d a a N N a a o o l l i i p p s s i i r r V V e e n n P P a a p p i i a a a a 1750 1750 1800 1800 1850 1850 1900 1900 1950 1950 2000 2000 2050 2050 2100 2100 S S i i p p g g D D n n i i n n 1980 2000 2020 2040 2060 2080 2100 I I r r e e a a a l a l d d e e I I n n i i t t l l d d R R s s e e B B n n d d L L N N e e Year Year n n c c T T d d a a i i a a a a s s Year e e r r e e h h o o n n m m h h e e f f 5 5 0 0 K K a i a i u u n n k k R R E E 5 5 C C o o w w a a t t e e s s a a W W R R 5 5 0 0 K K h h r r a a n n i i I I 5 5 i i e e a a n n a a Spatial pattern of climate W W G G 5 5 0 0 J J o o n n Scenario Scenario 5 5 a a r r e e a a D D I I D D p p a a P P M M a a R R R R n n p e p e u u b b l l change provided by GCM c i i c Spatial pattern Scaling Aggregation Spatial estimation of climate change impact Spatial data of future climate AIM/Impact Matsuoka and Kainuma 12 6

  7. CO 2 emission from energy consumption 20 CO 2 emission (GtC/y) BaU 15 450ppm 10 550ppm 5 0 650ppm 1990 2010 2030 2050 2070 2090 year Matsuoka and Kainuma 13 CO 2 emission from energy consumption, 450ppm target JPN AUS NZL USA CAN 8 EUR 7 FSU TWN CO 2 e m ission (G tC/y) 6 KOR HKG 5 SGP CHN 4 IDI IDN 3 MYS PHL 2 THA 1 LAM MEA 0 SSA ROW 1990 2010 2030 2050 2070 2090 year Matsuoka and Kainuma 14 7

  8. Primary energy supply 550 ppm scenario BaU scenario 1800 1800 1600 1600 Biomass Biomass 1400 1400 P rim ar y e ne rgy (E J /y) Primary energy (EJ/y) Solar Solar 1200 1200 Nuclear Nuclear 1000 1000 800 Hydro 800 Hydro 600 600 Coal Coal 400 400 Gas Gas 200 200 Oil Oil 0 0 1990 2010 2030 2050 2070 2090 1990 2010 2030 2050 2070 2090 year year Matsuoka and Kainuma 15 Required CO 2 emission changes in year 2050 compared with 1990 450ppm 550ppm 650ppm 1000 944 926 CO 2 emission change (%) 834 839 800 600 567 464 434 400 386 324 326 289 288 253 222 217 200 193 193 133 134 94 89 77 72 0 -5 4 2 -8 -13 -20 -20 -32 -32 -40 -34 -33 -33 -43 -48 -50 -50 -45 -57 -53 -62 -57 -59 -58 -55 -64 -60 -74 -76 -70 -67 -75 -70 -82 -200 JPN NZL USA EUR TWN KOR HKG SGP FSU CHN IDI IDN PHL ROW AUS CAN MYS THA LAM MEA SSA Matsuoka and Kainuma 16 8

  9. CO 2 emission changes in year 2050 compared with 1990 450ppm 550ppm 650ppm 600 CO 2 emission change (%) 500 496 480 477 412 405 403 400 334 331 315 307 304 300 295 285 277 268 265 267 253 246 240 237 224 223 218 210 211 200 159 135 130 128 129 129 122 110 108 100 101 73 59 50 46 25 0 1 -19 -32 -32 -36 -35 -37 -35 -100 -39 -41 -42 -50 -47 -51 -46 -54 -55 -57 -58 -64 -62 -68 JPN AUS NZL USA CAN EUR TWN KOR HKG SGP FSU CHN IDI IDN MYS PHL THA LAM MEA SSA ROW Matsuoka and Kainuma 17 Trade of CO 2 emission Trade of CO2 emission, Japan Trade of CO2 emission, West Europe 0 0.1 -0.005 450ppm 450ppm 0.05 -0.01 CO2 trade (GtC) CO2 trade (GtC) 550ppm 0 550ppm -0.015 -0.02 -0.05 650ppm 650ppm -0.025 -0.1 -0.03 -0.15 -0.035 1990 2010 2030 2050 2070 2090 1990 2010 2030 2050 2070 2090 year year Matsuoka and Kainuma 18 9

Recommend


More recommend