Multi- -gas Model Analysis on gas Model Analysis on Multi stabilization scenarios stabilization scenarios Junichi Fujino NIES, Japan The 9th AIM International Workshop; 12-13, March 2004 National Institute for Environmental Studies, Tsukuba, Japan 1
AIM model components AIM model components for multi- -gas study gas study for multi • AIM/CGE: Long-term scenario of Multi-gas – Top-down economic global model – Recursive dynamics CGE model – Multi-regional, multi-sectoral, multi-gas model • AIM/Enduse: Detailed Sketch of Multi-gas – Technology detailed bottom-up model – AIM/Enduse [country], AIM/Enduse [global] 2
1997 GHG Emissions of selected countries CO2 Fuel/ cement 100% CO2 LUCF 55% 19% 90% Total 11,100 80% MMTCE 70% CH4 60% 16% F-gases 1% 50% N2O 9% 40% 30% 20% 2000 Global Net 10% GHG Emissions 0% UK Brazil India China Spain Italy U.S. France Russia Canada Ukraine Australia Mexico Argentina Indonesia South Africa (MMTCE: Million Metric Ton Carbon Equivalent) Data source: 3 USEPA % CO2 % non-CO2
Global CH 4 Emissions in 2000 1800 Other 1600 CH 4 Emissions (MMTCE) Waste water Waste 1400 Solid waste 1200 Manure 1000 Enteric Agriculture fermentation 800 600 Rice cultivation Biomass burning 400 Biofuel combustion Natural gas Energy 200 Oil Coal 0 Global Data source: USEPA 4
Basic framework of AIM/CGE Basic framework of AIM/CGE • Type: Top-down, CGE, recursive dynamics • Program : GTAP-EG/GAMS/MPSGE • Database : GTAP ver.5(1997), IEA • Target Year: 2100 • Target Region: 18 regions • Target Sector: 13 sectors • Non-CO 2 gas abatement • (Land use: use SRES/B2(AIM) scenario) 5
Sectors of AIM/CGE Sectors of AIM/CGE 1 GAS Natural gas works 8 FRS Forestry 2 ELE Electricity and heat 9 FSH Fishing 3 OIL Refined oil products 10 EII Energy Intensive Industry 4 COL Coal transformation 11 OIN Other Industry 5 CRU Crude oil 12 T_T Transport 6 AGR Agriculture 13 SER Service 7 LVK Livestock 6
Structure of AIM/CGE model MAC MAC non- non- Energy CO2 CO2 Electricity resource input mix CO2 depletion Fuels input Electricity input Non-energy goods MAC CO2 input non- input CO2 consumption Production Sectors MAC investment multi-gas emission CO2 non- rent consumption CO2 Government right CO2 MAC primary non- factors CO2 Household 7
Marginal Abatement Cost Curves (MACs) for CH 4 200 Marginal Abatement Cost ($/TCE) World in 2010 150 100 CES function 50 0 -50 50 150 250 350 450 -50 Discount rate = 5% CH 4 reduction Data source: USEPA 8
Radiative Forcing/Temperature raise Radiative Forcing/Temperature raise constraint and dynamic recursive model constraint and dynamic recursive model 2000 MAC MAC non- non- Energy CO2 CO2 Electricity 2010 resource input mix depletion CO2 Fuels input MAC non- MAC Electricity non- Energy input 2020 CO2 Non-energy CO2 Electricity resource input goods MAC mix CO2 depletion CO2 input non- Fuels input MAC CO2 input MAC non- non- consumption 2030… Electricity Energy CO2 input Non-energy CO2 Production Sectors Electricity MAC resource investment input multi-gas emission CO2 goods MAC non- mix rent depletion consumption CO2 CO2 input MAC MAC CO2 non- non- Fuels non- 2100 input Energy input CO2 CO2 Electricity CO2 consumption Electricity resource Government input input Non-energy Production Sectors mix MAC depletion investment CO2 right multi-gas emission goods MAC CO2 MAC non- MAC non- rent non- CO2 consumption Fuels input Energy input CO2 non- CO2 CO2 CO2 MAC Electricity Electricity input primary resource non- CO2 input input consumption Non-energy factors mix depletion CO2 CO2 Government Household goods Production Sectors MAC MAC Fuels investment multi-gas emission CO2 right CO2 input input GHG emissions non- non- rent consumption Electricity input CO2 CO2 input CO2 consumption Non-energy MAC primary non- goods MAC Production Sectors MAC factors Government investment multi-gas emission CO2 CO2 CO2 input Household non- rent non- consumption right input CO2 CO2 consumption CO2 Other gases: MAC Production Sectors MAC primary non- multi-gas emission investment Government CO2 factors non- t consumption n CO2 right Household e CO2 r CO2 SOx, NOx MAC primary Government non- factors CO2 right Household CO2 BB+FF MAC primary non- factors CO2 Household Emission path to satisfy stabilization target Simple Climate Model Based on Joos model 9 (AIM/SSG)
Stabilization scenarios Stabilization scenarios (1) BaU Modeler’s reference (B2-like) (2) Long-term stabilization scenarios Stabilize radiative forcing at 4.5 W/m^2 by 2150 relative to pre-Industrial times (2-2) multi gas (2-1) CO 2 only (3) Long-term stabilization scenarios with rate of temperature change global mean temperature change to an average decadal rate of 0.20ºC (3-1) CO 2 only (3-2) multi gas 10
Calculation flow with AIM models Calculation flow with AIM models recursive dynamic CGE simple climate model AIM/CGE AIM/SSG set BaU case BaU propose emission path CO 2 only calculate scenario of CO 2 (temperature constraint) propose emission path of CO 2 ,CH 4 ,N 2 O multi gas calculate scenario by GWP basket (temperature constraint) 11
A n t h r o p o g e n i c G H G e m i s s i o n s A n t h r o p o g e n i c G H G e m i s s i o n s ( G t C - e q / y r ) ( G t C - e q / y r ) 1 1 1 1 1 1 1 1 0 2 4 6 8 0 2 4 6 0 2 4 6 8 0 2 4 6 C 2 0 0 0 2 0 0 0 O 2 C 2 0 1 0 2 0 1 0 H 4 N 2 0 2 0 2 0 2 0 2 O C 2 0 3 0 2 0 3 0 O C 2 0 4 0 2 0 4 0 2 O ( 2 C B a U 2 0 5 0 2 0 5 0 ) C H 4 N 2 0 6 0 2 0 6 0 H 4 ( CO 2 only 2 B O a 2 0 7 0 2 0 7 0 U ) N 2 0 8 0 2 0 8 0 BaU 2 O ( B 2 0 9 0 2 0 9 0 a U ) 2 1 0 0 2 1 0 0 A n t h r o p o g e n i c G H G e m i s s i o n s ( G t C - e q / y r ) 1 1 1 1 0 2 4 6 8 0 2 4 6 C 2 0 0 0 O GHG emissions GHG emissions Anthropogenic 2 C Anthropogenic 2 0 1 0 H 4 N 2 0 2 0 2 O C 2 0 3 0 O 2 0 4 0 2 ( B a U 2 0 5 0 ) C 2 0 6 0 H 4 multi gas ( B a 2 0 7 0 U ) N 2 0 8 0 2 O 12 ( B 2 0 9 0 a U ) 2 1 0 0
Radiative forcing and Radiative forcing and future CO 2 emission for stabilization future CO 2 emission for stabilization 12 CO 2 emission 10 Radiative Forcing (W/m 2 ) CO 2 emission (Gt-C/yr) BaU multi gas 8 CO 2 only 6 4.5W/m 2 BaU CO 2 only 4 multi gas 2 Radiative Forcing 0 13 2000 2050 2100 2150 2200 2250 2300
GHG reduction rate GHG reduction rate 9 0 % 8 0 % U 7 0 % a B o 6 0 % t C O 2 C O 2 o n l y e t C O 2 m u l t i g a s 5 0 % a r C H 4 C O 2 o n l y n 4 0 % o i C H 4 m u l t i g a s t c 3 0 % N 2 O C O 2 o n l y u d e N 2 O m u l t i g a s r 2 0 % G H 1 0 % G 0 % 2 0 0 0 2 0 2 0 2 0 4 0 2 0 6 0 2 0 8 0 2 1 0 0 - 1 0 % 14
Economic impact Economic impact 1 8 , 0 0 0 1 6 , 0 0 0 ) 1 4 , 0 0 0 $ S U 1 2 , 0 0 0 7 9 B a U 9 1 0 , 0 0 0 1 . l i C O 2 o n l y b 8 , 0 0 0 0 m u l t i g a s 1 ( 6 , 0 0 0 P 1 0 0 0 D G 4 , 0 0 0 9 0 0 2 , 0 0 0 ) 8 0 0 C t / 0 7 0 0 $ S 2 0 0 0 2 0 2 0 2 0 4 0 2 0 6 0 2 0 8 0 2 1 0 0 6 0 0 U ( C O 2 o n l y e 5 0 0 c i m u l t i g a s r p 4 0 0 n o b 3 0 0 r a C 2 0 0 1 0 0 0 15 2 0 0 0 2 0 2 0 2 0 4 0 2 0 6 0 2 0 8 0 2 1 0 0
Bottom Up Modeling Approach for Bottom Up Modeling Approach for Non CO2 Gases: An Overview Non CO2 Gases: An Overview Bottom Up analysis using the AIM/Enduse model • AIM/Enduse models energy and materials through detailed representation of technologies • Based on a linear optimization framework where system cost is minimized under several demand and supply constraints • The model is being structured to include Non CO2 gas emission sectors and linking to removal processes 16
Recommend
More recommend