when to eat your brown dwarf at breakfast lunch or dinner
play

When to eat your brown dwarf: At breakfast, lunch or dinner? - PowerPoint PPT Presentation

When to eat your brown dwarf: At breakfast, lunch or dinner? Tristan Guillot Observatoire de la Cte dAzur Doug Lin (UCSC), Pierre Morel (OCA) A&A stuff Increase font size (should be the same size as the text) Increase thickness


  1. When to eat your brown dwarf: At breakfast, lunch or dinner? Tristan Guillot Observatoire de la Côte d’Azur Doug Lin (UCSC), Pierre Morel (OCA)

  2. A&A stuff Increase font size (should be the same size as the text) Increase thickness Avoid vector fonts (with IDL: !p.font=0)

  3. M-T eff relation [Fe/H] 100.00 0.5 0.0 -0.5 10.00 M sini [M Jup ] 1.00 P [days] 100 0.10 10 1 0.01 3000 4000 5000 6000 7000 T eff [K] Bouchy et al. (2011)

  4. M-T eff relation [Fe/H] 100.00 0.5 0.0 -0.5 10.00 M sini [M Jup ] 1.00 P [days] 100 0.10 10 1 0.01 3000 4000 5000 6000 7000 T eff [K]

  5. M-T eff relation [Fe/H] HAT-TR-205-013 b OGLE-TR-106 b 100.00 OGLE-TR-122 b OGLE-TR-123 b 0.5 TYC 2930-00872 b CoRoT-15 b CoRoT-15 b WASP-30 b WASP-30 b NLTT 41135C b 0.0 KELT-1 b CoRoT-3 b CoRoT-3 b HD 41004 B b XO-3 b -0.5 CoRoT-27 b WASP-18 b WASP-18 b 10.00 CoRoT-14 b CoRoT-14 b WASP-14 b HAT-P-20 b HAT-P-20 b M sini [M Jup ] WASP-89 b tau Boo b CoRoT-2 b CoRoT-11 b WASP-19 b 1.00 P [days] 100 0.10 10 1 0.01 3000 4000 5000 6000 7000 T eff [K]

  6. M-T eff relation [Fe/H] Conjecture : Massive 100.00 0.5 planets and brown dwarfs in this region 0.0 have been swallowed -0.5 by their star due to 10.00 M sini [M Jup ] tidal interactions 1.00 P [days] 100 0.10 10 1 0.01 3000 4000 5000 6000 7000 T eff [K]

  7. Probabilities P orb <5days P orb >5days [Fe/H] [Fe/H] 100.00 100.00 0.5 0.5 0.0 0.0 -0.5 -0.5 10.00 10.00 M sini [M Jup ] M sini [M Jup ] 1.00 1.00 P [days] P [days] 100 100 0.10 0.10 10 10 1 1 0.01 0.01 3000 4000 5000 6000 7000 3000 4000 5000 6000 7000 T eff [K] T eff [K] 1.0 P(T eff >6000K & M 2 >M 2,i ) 0.8 0.6 P orb <5 days 0.4 0.2 P orb >5 days 0.0 0.01 0.10 1.00 10.00 100.00 M 2 [M Jup ]

  8. Consequences of tidal interactions • Circularization • Orbital migration • Critically depends on period and Q parameter • Q measures the efficiency of dissipation • Q is determined to be around 10 5 to 10 6 for the circularization of binary stars

  9. Q’ * =10 6 : migration timescales 10 12 * =10 6 Q' OGLE-TR-122 10 10 t migration [years] tau Boo 10 8 CoRoT-3 WASP-30 WASP-33 CoRoT-2 CoRoT-18 M [M jup ] CoRoT-15 100 WASP-12 10 6 CoRoT-14 HAT-TR-205-013 WASP-19 10 1 WASP-18 OGLE-TR-123 10 4 4000 5000 6000 7000 T eff [K]

  10. Model Solves the tidal evolution of star +companion in the planar case (assumes Q α n) Stellar evolution models (CESAM2k) are included (radius, moment of inertia, convective zones) Magnetic breaking is taken into account The companion’s radius is fixed = 1R jup Initial conditions are based on the observed, present-day population Guillot, Lin & Morel, in preparation Dynamical equations: Barker & Ogilvie (2009)

  11. The sources of dissipation in the star • Constant Q model • Requires Q*>10 8 • Cannot explain the tmig-Teff correlation • Dissipation of internal gravity waves (Goodman & Dickson 1998, Barker & Ogilvie 2010, 2011) • Only in stars with a radiative center • Only for companions with masses above a critical mass (>3 Mjup for a 5Ga Sun) • Dissipation of inertial waves (Ogilvie & Lin 2004, 2007) • Limited to a narrow frequency range

  12. The IGWs prescription The gravity waves break and dissipate near the stellar center if there is a radiative core and if the perturbing amplitude is large 0.0020 enough, i.e., for the present Sun: Non-linear Wave displacement [R Sun ] 30 M jup 0.0015 In that case the tidal 10 M jup 0.0010 dissipation factor is: 3 M jup 0.0005 1 M jup 0.0000 Otherwise, we assume Q’= 10 7 to 10 10 -0.0005 0.00 0.01 0.02 0.03 Radius [R Sun ] Barker & Ogilvie (2010)

  13. The critical mass for dissipation 0.0020 Non-linear Wave displacement [R Sun ] 30 M jup 0.0015 10 M jup 0.0010 3 M jup 0.0005 1 M jup 0.0000 -0.0005 0.00 0.01 0.02 0.03 Radius [R Sun ]

  14. Stellar evolution models

  15. Magnetic braking We assume a=1, n=1.5 and find Kw=1.5x10 -14 yr -1 , in agreement with Bouvier et al. 1997 We add a factor Min(1,m cz /m 0 ) where m cz is the mass of the outer convective zone/total mass and m 0 =6x10 -4 to account for the fact that massive stars have a slower braking 3 SPOCS + Nordstrom * =10 -3 m cz m cz * =10 -2 2 m cz * =0 Log(vsini) [km/s] 1 0 -1 4000 5000 6000 7000 8000 Teff [K]

  16. Constant dissipation model: Q’ * =10 8 P ini =3days 1.0 HAT-TR-205-013 b OGLE-TR-106 b 2 OGLE-TR-123 b TYC 2930-00872 b CoRoT-15 b 0.9 WASP-30 b lifetime/main sequence age 0.8 KELT-1 b CoRoT-3 b 0.7 log(M p ) [M Jup ] 1 CoRoT-27 b WASP-18 b CoRoT-14 b WASP-14 b HAT-P-20 b 0.6 WASP-89 b tau Boo b 0.5 0.4 0 0.3 0.2 0.1 -1 0.0 Q’ * =10 8 0.8 0.9 1.0 1.1 1.2 1.3 1.4 M star [M Sun ]

  17. Constant dissipation model: Q’ * =10 6 P ini =3days 1.0 HAT-TR-205-013 b OGLE-TR-106 b 2 OGLE-TR-123 b TYC 2930-00872 b CoRoT-15 b 0.9 WASP-30 b lifetime/main sequence age 0.8 KELT-1 b CoRoT-3 b 0.7 log(M p ) [M Jup ] 1 CoRoT-27 b WASP-18 b CoRoT-14 b WASP-14 b HAT-P-20 b 0.6 WASP-89 b tau Boo b 0.5 0.4 0 0.3 0.2 0.1 -1 0.0 Q’ * =10 6 0.8 0.9 1.0 1.1 1.2 1.3 1.4 M star [M Sun ]

  18. Internal gravity wave: full model P ini =3days 1.0 HAT-TR-205-013 b OGLE-TR-106 b 2 OGLE-TR-123 b TYC 2930-00872 b CoRoT-15 b 0.9 WASP-30 b lifetime/main sequence age 0.8 KELT-1 b CoRoT-3 b 0.7 log(M p ) [M Jup ] 1 CoRoT-27 b WASP-18 b CoRoT-14 b WASP-14 b HAT-P-20 b 0.6 WASP-89 b tau Boo b 0.5 0.4 0 0.3 0.2 0.1 -1 0.0 IGW 0.8 0.9 1.0 1.1 1.2 1.3 1.4 M star [M Sun ]

  19. Internal gravity wave: full model Too much orbital P ini =3days angular momentum 1.0 HAT-TR-205-013 b OGLE-TR-106 b 2 OGLE-TR-123 b Close-in, massive TYC 2930-00872 b CoRoT-15 b 0.9 WASP-30 b companions are lost lifetime/main sequence age F stars loose angular 0.8 KELT-1 b CoRoT-3 b momentum more 0.7 log(M p ) [M Jup ] 1 CoRoT-27 b WASP-18 b slowly and tidal CoRoT-14 b WASP-14 b HAT-P-20 b 0.6 WASP-89 b tau Boo b dissipation by IGWs is 0.5 not possible 0.4 0 0.3 0.2 0.1 Low mass companions are below critical limit -1 for IGWs dissipation except at old ages 0.0 IGW 0.8 0.9 1.0 1.1 1.2 1.3 1.4 M star [M Sun ]

  20. Is it breakfast or dinner-time for CoRoT -2? [Fe/H] HAT-TR-205-013 b OGLE-TR-106 b 100.00 OGLE-TR-122 b OGLE-TR-123 b 0.5 TYC 2930-00872 b CoRoT-15 b CoRoT-15 b WASP-30 b WASP-30 b NLTT 41135C b 0.0 KELT-1 b CoRoT-3 b CoRoT-3 b HD 41004 B b XO-3 b -0.5 CoRoT-27 b WASP-18 b WASP-18 b 10.00 CoRoT-14 b CoRoT-14 b WASP-14 b HAT-P-20 b HAT-P-20 b M sini [M Jup ] WASP-89 b tau Boo b CoRoT-2 b CoRoT-11 b WASP-19 b 1.00 P [days] 100 0.10 10 1 0.01 3000 4000 5000 6000 7000 T eff [K]

  21. CoRoT -2 • CoRoT -2 is a wide binary (Poppenhaeger & Wolk 2014) • CoRoT -2A is a G7V with a 3.5 Mjup companion • Apparent age: 0.1-0.3 Ga • CoRoT -2B is a K9V with a low X ray activity • Apparent age: >5 Ga • An old age helps putting back CoRoT -2Ab with the other inflated hot Jupiters 1.8 3x10 29 erg s -1 10 29 erg s -1 1.2 2x10 29 erg s -1 1.6 Radius [100,000 km] 1.1 Radius [R Jup ] 3x10 28 erg s -1 1.4 1.0 1% K.E. (4.6x10 27 erg s -1 ) opacities x 30 opacities x 30 0.9 standard model 1.2 0.8 1.0 Guillot & Havel (2011) 0.001 0.010 0.100 1.000 10.000 Age [Ga]

  22. Dynamical evolution of CoRoT -2 25 CoRoT -2 fiducial Orbital period Stellar spin period 3.5Mjup, Pini=5days, e=0 Planet spin period 20 log(Q * ) Period [days] 15 10 5 0 2000 4000 6000 8000 Age [Ma] CoRoT -2 massive 12 35Mjup, Pini=5days, e=0 Orbital period Stellar spin period 10 Planet spin period log(Q * ) Period [days] 8 6 Does not agree with the lack of massive planets on close orbits around G dwarfs: - Q’* dependence upon Pspin implies weaker dissipation in massive planet case 4 - When star & planet are locked, migration is governed by magnetic braking 2 timescale (see Damiani & Lanza 2015) 0 2000 4000 6000 8000 Age [Ma]

  23. Planets for breakfast? • Mazeh et al. (2015) show that “cool” KOIs are more aligned than “hot” KOIs (Teff>6250K) • up to Porb=50 days! • Matsakos & Königl (2015) propose that this may be due to an early ingestion of planets • Swallowed planets would affect the angular momentum of cool stars more than hot stars which have a faster rotation • This assumes that the stellar rotation axis and the disk with planets are tilted initially

  24. Conclusions • There are very few brown dwarfs & massive planets as close companions to G dwarfs whereas they are present around F dwarfs • This would be naturally explained by their engulfment • Would explain the «close-in brown dwarf desert» • Source of dissipation are still to be fully accounted for • Low magnetic braking in F-dwarfs is a critical factor • Internal gravity waves have the interesting properties but are unable to account for all observations • Inertial waves can potentially help • Role of eccentricity? • We still don’t know when brown dwarfs get eaten…

Recommend


More recommend