time domain models box jenkins popularized an approach to
play

Time Domain Models Box & Jenkins popularized an approach to time - PowerPoint PPT Presentation

Time Domain Models Box & Jenkins popularized an approach to time series analysis based on Auto-Regressive Integrated Moving Average (ARIMA) models. 1 Autoregressive Models Autoregressive model of order p (AR( p )): x t =


  1. Time Domain Models • Box & Jenkins popularized an approach to time series analysis based on – Auto-Regressive – Integrated – Moving Average (ARIMA) models. 1

  2. Autoregressive Models • Autoregressive model of order p (AR( p )): x t = φ 1 x t − 1 + φ 2 x t − 2 + · · · + φ p x t − p + w t , where: – x t is stationary with mean 0; – φ 1 , φ 2 , . . . , φ p are constants with φ p � = 0; – w t is uncorrelated with x t − j , j = 1 , 2 , . . . 2

  3. • To model a series with non-zero mean µ : � + φ 2 � + · · · + φ p � � ( x t − µ ) = φ 1 � x t − 1 − µ � x t − 2 − µ + w t , x t − p − µ or x t = α + φ 1 x t − 1 + φ 2 x t − 2 + · · · + φ p x t − p + w t , where α = µ (1 − φ 1 − φ 2 − · · · − φ p ) . • Note that the intercept α is not µ . 3

  4. • Note also that � � w t = x t − φ 1 x t − 1 + φ 2 x t − 2 + · · · + φ p x t − p and is therefore also stationary. • Furthermore, for k > 0, � � w t − k = x t − k − φ 1 x t − k − 1 + φ 2 x t − k − 2 + · · · + φ p x t − k − p and w t is uncorrelated with all terms on the right hand side. • So w t is uncorrelated with w t − k . • That is, { w t } is white noise . 4

  5. The Autoregressive Operator • Use the backshift operator: x t = φ 1 Bx t + φ 2 B 2 x t + · · · + φ p B P x t + w t , or 1 − φ 1 B − φ 2 B 2 − · · · − φ p B p � � x t = w t . • The autoregressive operator is φ ( B ) = 1 − φ 1 B − φ 2 B 2 − · · · − φ p B p . • In operator form, the model equation is φ ( B ) x t = w t . 5

  6. Example: AR (1) • For the first-order model: x t = φx t − 1 + w t . • Also x t − 1 = φx t − 2 + w t − 1 so � + w t x t = φ � φx t − 2 + w t − 1 = φ 2 x t − 2 + φw t − 1 + w t . 6

  7. • Now use x t − 2 = φx t − 3 + w t − 2 so � + φw t − 1 + w t x t = φ 2 � φx t − 3 + w t − 2 = φ 3 x t − 3 + φ 2 w t − 2 + φw t − 1 + w t . • Continuing: k − 1 x t = φ k x t − k + φ j w t − j . � j =0 7

  8. • We have shown: k − 1 x t = φ k x t − k + φ j w t − j . � j =0 • Since x t is stationary, if | φ | < 1 then φ k x t − k → 0 as k → ∞ , so ∞ φ j w t − j , � x t = j =0 • an infinite moving average, or linear process . 8

  9. Moments • Mean: E( x t ) = 0. • Autocovariances: for h ≥ 0 � � γ ( h ) = cov x t + h , x t       φ j w t + h − j φ k w t − k � � = E     j k = σ 2 w φ h 1 − φ 2 . 9

  10. • Autocorrelations: for h ≥ 0 ρ ( h ) = γ ( h ) γ (0) = φ h . • Note that ρ ( h ) = φρ ( h − 1) , h = 1 , 2 , . . . • Compare with the original equation x t = φx t − 1 + w t . 10

  11. Simulations • plot(arima.sim(model = list(ar = .9), 100)) 11

  12. Causality • What if | φ | > 1? Rewrite x t = φx t − 1 + w t . as x t = φ − 1 x t +1 − φ − 1 w t +1 • Now ∞ φ − j w t + j , � x t = − j =1 a sum of future noise terms. This process is said to be not causal . If | φ | < 1 the process is causal. 12

  13. The Autoregressive Operator Again • Compare the original equation: ⇒ x t = (1 − φB ) − 1 w t . x t = φx t − 1 + w t ⇐ ⇒ (1 − φB ) x t = w t ⇐ • with the (infinite) moving average representation:   ∞ ∞ φ j w t − j = φ j B j � �  w t x t =  j =0 j =0 13

  14. • So ∞ (1 − φB ) − 1 = φ j B j . � j =0 • Compare with ∞ ∞ 1 (1 − φz ) − 1 = ( φz ) j = φ j z j , � � 1 − φz = j =0 j =0 valid for | z | < 1 (because | φ | < 1). • We can manipulate expressions in B as if it were a complex number z with | z | < 1. 14

  15. Stationary versus Transient • E.g. AR(1): • Stationary version, when | φ | < 1: ∞ φ j w t − j � x t = j =0 • But suppose we want to simulate, using x t = φx t − 1 + w t , t = 1 , 2 , . . . • What about x 0 ? 15

  16. • One possibility: let x 0 = 0. • Then x 1 = w 1 , x 2 = w 2 + φw 1 , and generally t − 1 φ j w t − j . � x t = j =0 • This means that 1 + φ 2 + φ 4 + · · · + φ 2( t − 1) � var( x t ) = σ 2 � . w • var( x t ) depends on t ⇒ this version is not stationary. 16

  17. • But, if | φ | < 1, then for large t , σ 2 1 + φ 2 + φ 4 + . . . var( x t ) ≈ σ 2 � � w = w 1 − φ 2 • Also, under the same conditions (more work!), ≈ σ 2 w φ | h | � � cov x t + h , x t 1 − φ 2 . • This version is called asymptotically stationary. • The non-stationarity is only for small t , and is called tran- sient . Simulations use a burn-in or spin-up period: discard the first few simulated values. 17

  18. σ 2 � � • But note: in the stationary version, x 0 ∼ N 0 , w . 1 − φ 2 • If we simulate x 0 from this distribution, and for t > 0 use x t = φx t − 1 + w t , t = 1 , 2 , . . . , then the result is exactly stationary. • That is, we can use a simulation with no spin-up. • This is harder for AR( p ) when p > 1, so most simulators use a spin-up period. 18

Recommend


More recommend