the scanning tunnelling
play

the Scanning Tunnelling Microscope Rubn Prez Departamento de Fsica - PowerPoint PPT Presentation

Theoretical Modelling and the Scanning Tunnelling Microscope Rubn Prez Departamento de Fsica Terica de la Materia Condensada Universidad Autnoma de Madrid Curso Introduccin a la Nanotecnologa Mster de fsica de la


  1. Theoretical Modelling and the Scanning Tunnelling Microscope Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso “Introducción a la Nanotecnología ” Máster de física de la materia condensada y nanotecnología

  2. Theoretical modelling of SPM 1. STM: contrast mechanisms (lecture, 20/01/13) 2. AFM: Resolution? (lecture, 30/01/13) 3. New developments (discussion based on 4 recent papers, 03/02/13) 4. STM simulations (hands-on, 06/02/13) 5. AFM simulations (hands-on, 10/02/13)

  3. Understanding the STM contrast : GaAs (110) STM Experiments at different polarities As Ga • Only one atomic specie imaged for each voltage? • Shift between the position of the maxima?

  4. References JM. Blanco, F. Flores and R. Perez. Progress in Surface • Science 81, 403-443 (2006). W. A. Hofer. Progress in Surface Science 71, 147-183 • (2003). • C. J. Chen. “Introduction to Scanning Tunneling Microscopy”. 2nd Edition. (Oxford University Press, Oxford, 2008). • R. Wiesendanger. “Scanning Probe Microscopy & Spectroscopy”. (Cambridge University Press, Cambridge, 1994). • D. Bonell, Editor. “Scanning Probe Microscopy & Spectroscopy”. 2nd Edition. (Wiley -VCH, New York, 2001).

  5. Principle of operation  Atomic protrusions on the tip are usually random, and with luck one atom may protrude sufficiently to dominate the tunneling geometry.  Atomic resolution: Tunnelling probability changes an order of magnitude for every angstrom change.  Contrast: combined effects of topography and electronic structure. “It soon become apparent that it was one thing to obtain an image and quite another to understand the structure that was seen” G.A.D. Briggs and A.J. Fisher, Surf. Sci. Rep. 33 (1999) 1-81

  6. The problem we are facing… STM implies describing tip, sample + tunnelling process. Applying V  system out of equilibrium  Most theoretical tools for systems in equilibrium,so... TIP Tip-surface distance ~ 5-10 Å  exchange- correlation and image potential effects are important ( are well described by DFT??) d: Tip-surface distance Conventional approaches: Sample description is usually good, while transport and tip are treated with very rough approximations... (perturbative, s-wave for the tip, no image effects)  qualitative description, but can we make it quantitative...? SURFACE Non-perturbative approaches for tunneling + first-principles description of the electronic properties of tip and sample

  7. OUTLINE 1) Different STM approaches: Perturbative method: Bardeen, Tersoff-Haman, Chen Bardeen: Transfer Hamiltonian + Bardeen tunnelling current Tersoff – Haman approximation (T-H) Chen’s improvement to T -H Non-perturbative approaches to transport: Scattering matrix (only elastic contributions) Landauer formalism Keldysh-Green function formalism 2) Combining STM and theoretical modelling: Examples 3) Recent developments & Challenges: (tip-sample interaction, electric field, spin-polarized STM)

  8. Perturbative Methods: Bardeen , Tersoff-Haman and Chen’s approach

  9. Transfer Hamiltonian + TUNNELLING CURRENT (J. Bardeen, PRL 6 (1961) 57) Uncoupled system Coupled system: 2         1 / 2 U S k k k k ˆ    2   1 / 2 H U U T S 2         1 / 2 U ' ' ' ' k k k k T

  10. Transfer Hamiltonian + TUNNELLING CURRENT (J. Bardeen, PRL 6 (1961) 57) Uncoupled system Coupled system: 2         1 / 2 U k S k k k ˆ      2 1 / 2 H U U T S 2         1 / 2 U ' ' ' ' k k k k T Current (1 st order perturbation theory) Energy 2 ' , . k empt          2 /  I e T Empty states  (k ' ) ' ' k kk k k , . k occ V (T kk’  tunnelling matrix element between  k and  k’ ) Occupied states             2 ( ) Bardeen showed that under certain assumptions,  T m d S ' ' ' kk k k k k S

  11. TERSOFF-HAMAN APPROXIMATION: Ideal tip, with an s-like orbital in the apex  S  k WF    2 dI  2        ( )    ( ) ( , ) ( , ) T r tunnel T r r r ' ' kk k tip kk k tip sample tip k sample tip k dV      (     ( , )        , ) ( ) ( ) I r I r f f d V  0 tunnel sample tip Fermi tunnel sample tip T S  

  12. TERSOFF-HAMAN APPROXIMATION: Sample D.O.S. Tip height ~ 5 – 7 Å Sample D.O.S. near the Fermi level controls the current STM images are not topographic.

  13. Atomic resolution on the Si(111)-7x7 100 Å 6-7Å faulted half unfaulted half 12 adatoms 6 rest atoms corner hole dimers Calculated charge distribution on the states (“dangling bonds”) localized on adatom and rest atom

  14. Understanding the bias dependence: GaAs (110) STM Experiments As Ga • Only one atomic specie imaged for each voltage? • Shift between the position of the maxima?

  15. GaAs (110): Understanding the bias dependece As Ga  tip  sample V T -V S >0 0.8 As 0.7 Ga 0.6 V S -V T >0 0.5 0.4  (E) 0.3 0.2 0.1 0.0 -2 0 2 E

  16. GaAs (110): Theoretical STM images V S -V T > 0 4 15.55 3 15.53  15.51 15.49 15.47 2 15.45 15.43 15.41 15.39 1 15.37 15.35 15.33 15.31 15.29 0 15.27 15.25 Y 15.23 15.21 -1 15.19 15.17 15.15 15.13 15.11 -2 15.09 15.07 15.05 15.03 -3 15.01 14.99 14.97 14.95 -4 -4 -2 0 2 4 X V T -V S > 0 4 1.51E1 1.508E1 3 1.505E1 1.503E1 1.501E1 1.498E1 2 1.496E1 1.494E1 1.491E1 1.489E1 1 1.487E1  1.484E1 1.482E1 1.48E1 0 1.477E1 1.475E1 Y 1.473E1 1.47E1 -1 1.468E1 1.466E1 1.463E1 1.461E1 -2 1.459E1 1.456E1 1.454E1 1.452E1 -3 1.449E1 1.447E1 1.445E1 1.442E1 -4 1.44E1 -4 -2 0 2 4 X

  17. A typical application of Tersoff-Hamann Approach (S-H. Lee et al, PRL 85 (2000) 3890) Novel surface geometry for GaAs(100) under low As pressure First principles calculations of  sample + T-H approach for tunneling

  18. CHEN’s IMPROVEMENT TO TERSOFF -HAMAN (C.J. Chen, PRL 65 (1990) 448 ; PRB 42 (1990) 8841; PRL 69 (1992) 1656) T-H reproduces qualitatively large period surface reconstructions + adsorbates on metals Lateral atomic resolution in closed-packed metal surfaces But CANNOT reproduce: Large atomic corrugations Inverted contrast images Directional p or d-like orbitals at the tip apex needed   ( ) d r  For a p-like orbital k tip T ' kk dx i  2  ( ) d r  k tip T ' kk dx dxj i For a d-like orbital  2  ( ) d r  2    k tip ( ) T W r 3 ' 2 kk k tip dz

  19. PROBLEMS WITH B — T-H — CHEN APPROACH: 1) Gives just the 1 st order perturbation term 2) Small T-S distances: T kk’ don’t include the effect of tip -sample chemical interaction. 3) Long T-S distances : T kk’ smaller than actual values due to long range atomic potentials. 4) T-H: At typical tip-sample distances,  sample (r tip ,  ) can’t be used. 5) T-H: Neglects the dependence on the tip structure Atomic oxygen on Pd(111) imaged with two diffent tips (M. Salmeron group) 6) Chen: Not easy to combine different tip-orbital symmetries to get real image.

  20. Approaches based on Bardeen’s tunneling currents and First Principles calculations O. Paz et al PRL 94, 056103 (2005) W. Hofer & J. Redinger Surf. Sci. 447, 51 (2000) W. Hofer et al RMP 75, 1287 (2003) FLAPW calculations for isolated tip & sample + Numerical evaluation of the Bardeen integral over a plane located at the medium distance Propagating the sample wfn’s with the vaccuum Green’s function G

  21. Non-perturbative approaches to electronic transport: Calculating the STM current

  22. MULTIPLE SCATTERING formalism (P. Sautet, Chem. Rev. 97 (1997) 1097; SS 374 (1997) 406; J. Cerdá et al, PRB 56 (1997) 15885) 1) Electron tunnelling viewed as a scattering process. 2) Tunnel gap treated as a 2-dimensional defect. 3) Scattering matrix contains the probability amplitudes for conduction electrons. Incident Transmitted Reflected 2D defect Semi-infinite solid Semi-infinite solid

  23. MULTIPLE SCATTERING formalism Calculating S mm’ (E)? • ESQC: transfer matrix tech. (both sides have to be identical, only zero bias). • Surface Green’s function matching (finite bias, more robust computationally)

  24. MULTIPLE SCATTERING formalism: Applications A theoretical approach to adsorbate identification (P. Sautet, SS 374 (1997) 406) B C N O

Recommend


More recommend