perturbation theory ch 6
play

Perturbation theory (Ch. 6) (time-independent, nondegenerate, Sec. - PowerPoint PPT Presentation

EE201/MSE207 Lecture 15 Perturbation theory (Ch. 6) (time-independent, nondegenerate, Sec. 6.1) Usually solving TISE = is too complicated; need approximations. Perturbation theory is one of approximate methods to solve TISE.


  1. EE201/MSE207 Lecture 15 Perturbation theory (Ch. 6) (time-independent, nondegenerate, Sec. 6.1) Usually solving TISE πΌπœ” = πΉπœ” is too complicated; need approximations. Perturbation theory is one of approximate methods to solve TISE. Idea: separate Hamiltonian into simple and small parts (if possible) 𝐼 = 𝐼 0 + 𝐼 0 πœ” = πΉπœ” is simple (can be solved), 𝐼 1 𝐼 1 is small where 𝐼 = 𝐼 0 + πœ‡ 𝐼 1 then power series in πœ‡ β‰ͺ 1 , and then πœ‡ = 1 Trick: (0) + πœ‡πœ” π‘œ (1) + πœ‡ 2 πœ” π‘œ (2) + . . . πœ” π‘œ = πœ” π‘œ notation πœ” = |πœ”βŒͺ (0) + πœ‡πΉ π‘œ (1) + πœ‡ 2 𝐹 π‘œ (2) + . . . 𝐹 π‘œ = 𝐹 π‘œ 0 + πœ‡πœ” π‘œ 1 + . . . ) = (𝐹 π‘œ 0 + πœ‡πΉ π‘œ 1 + . . . )(πœ” π‘œ 0 + πœ‡πœ” π‘œ 1 + . . . ) 𝐼 0 + πœ‡ 𝐼 1 (πœ” π‘œ 0 = 𝐹 π‘œ 0 πœ” π‘œ 0 . . . order πœ‡ 0 : 𝐼 0 πœ” π‘œ order πœ‡ 2 : (solvable exactly) . . . 1 + 0 = 𝐹 π‘œ 0 πœ” π‘œ 1 + 𝐹 π‘œ 1 πœ” π‘œ order πœ‡ 3 : 0 order πœ‡ 1 : 𝐼 0 πœ” π‘œ 𝐼 1 πœ” π‘œ . . .

  2. First-order perturbation theory ( πœ‡ 1 ) 1 + 0 = 𝐹 π‘œ 0 πœ” π‘œ 1 + 𝐹 π‘œ 1 πœ” π‘œ 0 𝐼 0 πœ” π‘œ 𝐼 1 πœ” π‘œ βˆ— ∞ 𝑒𝑦 , or (the same) βŒ©πœ” π‘œ 0 𝑦 0 |. . . Multiply by πœ” π‘œ and integrate, βˆ’βˆž 1 βŒͺ + βŒ©πœ” π‘œ 0 | 0 βŒͺ = 𝐹 π‘œ 0 βŒ©πœ” π‘œ 0 |πœ” π‘œ 1 βŒͺ + 𝐹 π‘œ (0) | 1 βŒ©πœ” π‘œ 𝐼 0 |πœ” π‘œ 𝐼 1 |πœ” π‘œ equal notation πœ” 1 𝐼 πœ” 2 = βŒ©πœ” 1 | 𝐼 πœ” 2 βŒͺ 1 = βŒ©πœ” π‘œ 0 | 0 βŒͺ 𝐹 π‘œ 𝐼 1 |πœ” π‘œ First-order correction to energy is just the average (expectation) value of 𝐼 1 in the unperturbed state (very natural)

  3. First-order perturbation theory (cont.) 1 + 0 = 𝐹 π‘œ 0 πœ” π‘œ 1 + 𝐹 π‘œ 1 πœ” π‘œ 0 𝐼 0 πœ” π‘œ 𝐼 1 πœ” π‘œ (1) to wavefunction Now find correction πœ” π‘œ 0 ) πœ” π‘œ 1 = βˆ’( (1) ) πœ” π‘œ 0 ( 𝐼 0 βˆ’ 𝐹 π‘œ 𝐼 1 βˆ’πΉ π‘œ Rewrite (1) = π‘›β‰ π‘œ 𝑑 𝑛 (π‘œ) πœ” 𝑛 (π‘œ) = 0 (0) πœ” π‘œ 𝑑 π‘œ Expand in zero-order eigenstates from normalization (0) βˆ’ 𝐹 π‘œ (π‘œ) πœ” 𝑛 0 ) 𝑑 𝑛 0 = βˆ’( (1) ) πœ” π‘œ 0 π‘›β‰ π‘œ (𝐹 𝑛 𝐼 1 βˆ’πΉ π‘œ 0 βˆ’ 𝐹 π‘œ 0 ) 𝑑 π‘š π‘œ = βˆ’ πœ” π‘š 1 πœ€ π‘šπ‘œ 0 0 (0) | : (𝐹 π‘š 𝐼 1 πœ” π‘œ + 𝐹 π‘œ Multiply by βŒ©πœ” π‘š (1) (another way of derivation) For π‘œ = π‘š we obtain the previous formula for 𝐹 π‘œ 0 0 π‘œ = πœ” π‘š 𝐼 1 πœ” π‘œ For π‘œ β‰  π‘š : 𝑑 π‘š 0 βˆ’ 𝐹 π‘š 0 𝐹 π‘œ 0 0 πœ” 𝑛 𝐼 1 πœ” π‘œ (1) = (0) πœ” π‘œ πœ” 𝑛 0 βˆ’ 𝐹 𝑛 0 Rename π‘š β†’ 𝑛 𝐹 π‘œ π‘›β‰ π‘œ

  4. First-order perturbation theory: summary 𝐼 = 𝐼 0 + 𝐼 1 1 = βŒ©πœ” π‘œ 0 | 0 βŒͺ 𝐹 π‘œ 𝐼 1 |πœ” π‘œ 0 = 𝐹 π‘œ 0 πœ” π‘œ 0 𝐼 0 πœ” π‘œ (0) + πœ” π‘œ (1) + … 0 0 πœ” 𝑛 𝐼 1 πœ” π‘œ πœ” π‘œ = πœ” π‘œ (1) = (0) πœ” π‘œ πœ” 𝑛 0 βˆ’ 𝐹 𝑛 0 (0) + 𝐹 π‘œ (1) + … 𝐹 π‘œ 𝐹 π‘œ = 𝐹 π‘œ π‘›β‰ π‘œ (0) = 𝐹 π‘œ (0) (i.e. when degeneracy). Then Remark. Correction to πœ” π‘œ is not good if 𝐹 𝑛 the formalism is a little different. Usually degeneracy is lifted (disappears) due to perturbation. For example, in hydrogen atom there is fine structure (due to relativistic correction and spin-orbit) and hyperfine structure (due to magnetic interaction of electron and proton). Second-order perturbation: similar but lengthier 2 Result for second-order correction 0 0 πœ” 𝑛 𝐼 1 πœ” π‘œ (2) = to energy of n th level: 𝐹 π‘œ 0 βˆ’ 𝐹 𝑛 0 𝐹 π‘œ π‘›β‰ π‘œ

  5. WKB approximation (Ch. 8) (Wentzel, Kramers, Brillouin, 1926) βˆ’ ℏ 2 𝑒 2 πœ” 𝑦 𝐹 can be discrete + π‘Š 𝑦 πœ” 𝑦 = 𝐹 πœ”(𝑦) 𝑒𝑦 2 2𝑛 or continuous If π‘Š 𝑦 = const , then easy to solve If π‘Š 𝑦 varies slowly, then modify solution for π‘Š 𝑦 = const . Idea: Two cases: 𝐹 > π‘Š(𝑦) (classical region) 𝐹 < π‘Š(𝑦) (tunneling)

  6. WKB approximation, classical region, 𝐹 > π‘Š(𝑦) 2𝑛(𝐹 βˆ’ π‘Š) If π‘Š 𝑦 = const = π‘Š , then πœ” 𝑦 = 𝐡 𝑓 ±𝑗𝑙𝑦 , 𝑙 = ℏ 𝑦 𝑙 𝑦 β€² 𝑒𝑦 β€² Then for π‘Š(𝑦) we expect πœ” 𝑦 β‰ˆ 𝐡 𝑦 exp ±𝑗 2𝑛 πœ” π‘’πœ” βˆ— 𝐾 = 𝑗ℏ 𝑒𝑦 βˆ’ πœ” βˆ— π‘’πœ” From conservation of the probability current 𝑒𝑦 1 𝐡 𝑦 ∝ we obtain Therefore 𝑙(𝑦) 𝑦 πœ” 𝑦 β‰ˆ const 𝑙 𝑦 β€² 𝑒𝑦 β€² 2𝑛[𝐹 βˆ’ π‘Š 𝑦 ] exp ±𝑗 𝑙(𝑦) = 𝑙 𝑦 ℏ 𝑗 slightly different in the textbook, Β± ℏ π‘ž 𝑦 𝑒𝑦 𝑀 𝑦 , so πœ” 2 ∝ Remark 1. 1 𝑙(𝑦) ∝ 1 1 𝑀(𝑦) , as it should be. Remark 2. If 𝑛(𝑦) (as in SiGe technology), then 𝐡(𝑦) ∝ 𝑛(𝑦) 𝑙(𝑦) . Remark 3. WKB approximation works well only for slowly changing π‘Š(𝑦) .

  7. WKB approximation, tunneling, 𝐹 < π‘Š(𝑦) 2𝑛(π‘Š βˆ’ 𝐹) If π‘Š 𝑦 = const = π‘Š , then πœ” 𝑦 = 𝐡 𝑓 Β±πœ‡π‘¦ , πœ‡ = ℏ Similarly 𝑦 πœ” 𝑦 β‰ˆ const πœ‡ 𝑦 β€² 𝑒𝑦 β€² 2𝑛[π‘Š 𝑦 βˆ’ 𝐹] exp Β± πœ‡(𝑦) = πœ‡ 𝑦 ℏ WKB approximation is often used to estimate probability of tunneling (coefficient of transmission) through a strong (almost β€œopaque”) tunnel barrier π‘Š(𝑦) Tunneling probability πœ” π‘—π‘œ πœ” 𝑝𝑣𝑒 πœ” out 2 πœ” in 2 π‘ˆ ≃ 𝐹 π‘ˆ β‹˜ 1 𝑏 πœ‡ 𝑦 𝑒𝑦) 0 π‘ˆ ≃ exp(βˆ’2 𝑏 0 (very crudely; we neglect all pre-exponential factors, which usually are within one order of magnitude, while exponential factor can typically be 10 βˆ’3 βˆ’ 10 βˆ’10 )

  8. WKB, connection between the two regions assume smooth π‘Š(𝑦) 𝐹 (different result for an abrupt potential) π‘Š(𝑦) 𝑦 0 (classical turning point) WKB approximation does not work well in the vicinity of 𝑦 0 , we need a better approximation near 𝑦 0 (linear potential, Airy functions). Result: 𝑦 𝐷 πœ‡ 𝑦 β€² 𝑒𝑦′ , exp βˆ’ 𝑦 > 𝑦 0 πœ‡(𝑦) 𝑦 0 πœ” 𝑦 β‰ˆ 𝑦 0 2 𝐷 sin 𝜌 𝑙 𝑦 β€² 𝑒𝑦′ , 4 + 𝑦 < 𝑦 0 𝑙(𝑦) 𝑦

  9. Variational principle (Ch. 7) Only Sec. 7.1 Theorem: For an arbitrary |πœ”βŒͺ , the ground state energy 𝐹 𝑕 satisfies inequality 𝐹 𝑕 ≀ πœ” 𝐼 πœ” = 〈 𝐼βŒͺ Proof is simple. Let us expand πœ” = π‘œ 𝑑 π‘œ |πœ” π‘œ βŒͺ . Then since 𝐹 π‘œ β‰₯ 𝐹 𝑕 , we get 𝐼 = π‘œ 𝑑 π‘œ 2 𝐹 π‘œ β‰₯ 𝐹 𝑕 π‘œ 𝑑 π‘œ 2 = 𝐹 𝑕 This theorem can be useful to estimate 𝐹 𝑕 (or at least to find an upper bound) Idea: Use trial wavefunctions |πœ”βŒͺ with many adjustable parameters and minimize 〈 𝐼βŒͺ . Hopefully min 〈 𝐼βŒͺ is close to 𝐹 𝑕 . Extensions of this method can also be used to find |πœ” 𝑕 βŒͺ , first-excited state energy and wavefunction (using subspace orthogonal to |πœ” 𝑕 βŒͺ ), second-excited state, etc.

More recommend