FG IMT-2020 Workshop and Demo Day: Technology Enablers for 5G Technologies for future mobile transport networks Pham Tien Dat 1 , Atsushi Kanno 1 , Naokatsu Yamamoto 1 , and Tetsuya Kawanishi 1,2 1 National Institute of Information and Communications Technology, Japan 2 Wasdea university, Tokyo, Japan
Outline Flexible fiber-wireless mobile fronthaul • Downlink system • Bidirectional transmission Seamless fiber-wireless for moving cells Multiple radios over fiber system Conclusion 2
Flexible fiber-wireless transport systems Core network BBU pool Control BBU BBU BBU office MUX/ MUX/ DEMUX DEMUX RRH RAU RAU RRH RAU RRH 3
Fiber-wireless convergence MMW RAU Digital DSP FE O/E E/O LO Conventional optical-MMW link: Large latency, high power RAU Opt. LO MMW Digital FE O/E E/O Seamless optical and MMW connection: Low latency, low power 4
Operating principle Δf f = |c/ λ 1 -c/ λ 2 | Optical fiber λ λ 1 λ 2 O/E Freq . converter Microwav e f λ 2 λ 1 Millimeter Microwave E/O O/E Down. λ 2 λ 1 LO Microwave λ Microwave Millimeter Up. Down. O/E E/O 5
Downlink system: experimental setup CS AWG PC OBPF EDFA OBPF EDFA MZM AWG Two-tone opt. gen. 10 20 km -10 RRH Power (dBm) -30 -50 F-OFDM 1 m -70 -90 88.1 GHz 89.2 – 92.45 1,549.4 1,550 1,550.6 Wavelength (nm) LNA GHz LNA ATT PD PA LTE-A ÷ RAU MZM: Mach-Zehnder Modulator VSA: Vector Signal Analyser P . T . Dat et al., ECOC (2016) LNA: Low Noise Amplifier EDFA: Erbium-Doped Fiber Amplifier VSG: Vector Signal Generator ATT: Attenuator 6 PD: photo-detector OBPF: Optical Band Pass Filter
Downlink system: experimental results -10 P . T . Dat et al., ECOC (2016) Sig.1 Sig.2 -20 Sig.3 Sig.4 -30 Power (dBm) -40 -50 -60 -70 1 1.5 2 2.5 3 3.5 4 4.5 Data 2 Frequency (GHz) Data 1 24 24 Sig. 1, data 1 Sig. 1, data 1 Sig. 1, data 2 Sig. 1, data 2 Sig. 2, data 1 Sig. 2, data 1 Sig. 2, data 2 Sig. 2, data 2 20 20 Sig. 3, data 1 Sig. 3, data 1 Sig. 3, data2 Sig. 3, data 2 Sig. 4, data 1 Sig. 4, data 1 EVM (%) Sig. 4, data 2 Sig. 4, data 2 EVM (%) 16 16 12 12 8 8 -2 0 2 4 6 8 0 1 2 3 4 5 6 Tx. LTE-A Power (dBm) Rx. Opt. Power (dBm) Performance versus LTE-A signal powers Performance versus received optical powers 7
Bidirectional system: experimental setup Central Station Opt. MMW Remote Antenna Unit Gen. DL LTE-A inter-band 1 PD ATT PA 10 km VSG_1 92.5 GHz Com. Sync. MZM VSG_2 EDFA DL LTE-A EDFA inter-band 2 ATT LNA LNA UL LTE-A RoF RoF VSA ED Rx. Rx. -40 DL LTE-A Power (dBm) inter-band 1 -60 LNA LNA VSA_1 -80 ED Did. -100 Sync . -120 VSA_2 830 840 850 860 870 Frequency (MHz) DL LTE-A LO -40 inter-band 2 96 GHz Power (dBm) -60 96 GHz -80 VSG Remote -100 Radio Head UL LTE-A -120 8 2.580 2.59 2.6 2.61 2.62 Frequency (GHz)
Bidirectional: experimental results 12 12 12 64-QAM, interband 1 64-QAM, interband 1 10 64-QAM, no DL 10 10 64-QAM, interband 2 64-QAM, interband 2 64-QAM, with DL 8 8 8 With UL Only DL EVM (%) 6 6 >17 dB 6 4 4 4 2 2 2 0 0 -5 -2 -2 -15 -10 0 5 0 2 4 6 0 2 4 6 Rx. Opt. Power (dBm) Rx. Opt. Power (dBm) Rx. Opt. Power (dBm) UL LTE-A signal DL LTE-A signal P . T. Dat et al., OFC (2015) Successful bidirectional transmission for CA LTE-A signals Applicable for future 5G signal transmission (256-QAM with EVM < 3.5%) PONs can be applied for optical transport (ITU-T req. for PONs: 15 dB) 9
Seamless fiber-wireless for moving cells P . T. Dat et al., IEEE Control Station Metro/Access Network Commun. Mag. (2015) WDM Radio over Fiber Multiplexer RAU #2 RAU #n Millimeter-wave RAU #1 Linearly located remote cells From outside Seat Aisle 10
Network control and moving cells Control Office Signal Processing Metro/Access Network Units Modulation DEMUX WDM WDM Modulation RoF Tx . Modulation Switch Switch control Location Uplink power position λ 1 , λ 2 λ 3 , λ 4 λ n-1 , λ n 11
Proof-of-concept: experimental setup P . T . Dat et al., OFC (2016) RAU_1 CS VSG PC PD PA (3) IF LD 1 MZM 1 SHD ATT 20 km LNA ATT. PA (2) LO P-S X (1) LD 2 MZM 2 EDFA PS ISO ISO PD LD DPMZM TAU RAU_2 OBEF EDFA OBPF 23.125 GHz Opt. MMW Gen. 1 LO_1 LO_2 LO_3 10 MHz DPMZM: Dual-parallel MZM 20 GHz ATT AP 40 GHz OBEF: Optical band pass elimination filter RoF OBPF: Optical band pass filter Opt. MMW Gen. 2 EDFA 1 km ATT Rx. ATT: Attenuator (6) RF cable (4) P-S: Power Splitter VSA ISO: Isolator ATT LNA 41.9 GHz (5) PS: Phase shifter RoF Tx. -20 -20 0 0 0 0 (6) 0 (2) (3) (3) (4) (5) (1) -20 -20 -20 -20 -20 -40 -40 Power (dBm) -40 -40 -40 -40 -40 -60 -60 -60 -60 -60 -60 -60 -80 -80 -80 -80 -80 -80 -80 1548 1550 1552 1548 1550 1552 1548 1550 1552 1548 1552 1556 1555 1556 1557 1547 1551 1555 1548 1549 1550 1551 Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) 12
Proof-of-concept: experimental results 10 10 32-QAM, CH1 32-QAM, CH1 64-QAM, CH1 64-QAM, CH1 32-QAM, CH2 32-QAM, CH2 64-QAM, CH2 8 8 64-QAM, CH2 EVM (%) 6 6 4 4 -6 -4 -2 0 2 4 -4 -2 0 2 4 6 IF Tx. Power (dBm) IF Tx. Power (dBm) 50-MHz OFDM signal 30-MHz OFDM signal P . T . Dat et al., OFC (2016) Good performance for both backhaul and over in-train networks High-spectral efficiency, low fiber-dispersion, cost effective system 13
Multiple radios over fiber Multi-RATs over seamless fiber-wireless system Optical LO BBU pool-1 DSP-based + E/O O/E DAC mapping BBU pool-N 4G LTE MFH RAT-1 4G or control DAC signals CPRI for fronthauling: bit rate >> Data mapping using F-OFDM 100 Gb/s/cell. RoF: high-speed components, Subcarrier Subband- 1 Signal- 1 IFFT- 1 CP- 1 filter mapping massive systems + Subcarrier Subband- K Signal- K IFFT- K CP- K mapping filter Cooperation of optical and radio access networks 14
Multiple radios over fiber: experimental setup 10 -10 Div. Power (dBm) -30 AWG PC LTE-A -50 LTE-A OBPF ATT PD -70 Com. VSG VSG -90 1555.6 1556 IF ATT Wavelength (nm) OBPF PD X4 20 km RAU MZM LD EDFA LD DPMZM RRH EDFA OBPF 2.5 m 12 GHz 95 GHz Frequency 96-GHz HPF CS Doubler MFH OSC MZM: Mach-Zehnder Modulator EDFA: Erbium-Doped Fiber Amplifier LO signal VSG: Vector Signal Generator VSA Com.: RF combiner 25-GHz OBPF IF PD: photo-detector PD ATT signal RAT 21 GHz Did. RF Divider ATT PD OBPF LPF VSA: Vector Signal Analyser LNA: Low Noise Amplifier User RRH ATT: Attenuator 15 (O)BPF: (Optical) Band Pass Filter
Multiple radios over fiber: experimental results 16 20 OFDM LTE-A -30 Signal 1 Signal 2 18 Signal 1 Sig. 1 Sig. 2 Sig. 3 Sig. 4 Signal 3 Signal 2 -50 14 Signal 4 Signal 3 16 Signal 4 Power (dBm) EVM (%) EVM (%) -70 14 12 -90 12 -110 10 10 0.5 1 1.5 2 2.5 3 -7.5 -8.5 -6.5 -5.5 -4.5 6 8 10 12 14 16 Frequency (GHz) Tx. LTE-A Power (dBm) Rx. Opt. Power (dBm) F-OFDM Signal 4 8 OFDM CC1 (20 MHz) OFDM NOMA CC2 (20 MHz) OFDM SCMA CC3 (20 MHz) FBMC 3 6 EVM (%) OFDM SCMA NOMA (16 x 16) -10 2 Power (dBm) 4 -50 OFDM FBMC 1 -90 2 -6 -18 -14 -10 3.96 4 4.04 -10 -8 -6 -4 Frequency (GHz) Rx. Opt. Power (dBm) Rx. Opt. Power (dBm) LTE-A Signal 16 New RAT signal (OFDM/FBMC)
Summary Seamless convergence of fiber-MMW would be a potential solution for future mobile fronthauling when fiber cable is not available. Convergence of WDM IFoF and linearly located distributed antenna systems is very promising for high- speed communication to high-speed trains. Co-design and cooperative fiber-radio access networks would be the key for future MMW and massive MIMO mobile signal, and multi-RAT transmission. 17
This work was conducted as a part of the “Research and development for expansion of radio wave resources,” supported by the Ministry of Internal Affairs and Communications (MIC), Japan. Thank you ptdat@nict.go.jp
Recommend
More recommend