study of impurity distribution and transport coefficients
play

Study of Impurity Distribution and Transport Coefficients - PowerPoint PPT Presentation

Study of Impurity Distribution and Transport Coefficients Determination in ITER like Plasma Coefficients Determination in ITER-like Plasma Liping Zhu, Woochang Lee, Gunsu Yun, Hyeon K. Park Pohang University of Science and Technology, Pohang


  1. Study of Impurity Distribution and Transport Coefficients Determination in ITER like Plasma Coefficients Determination in ITER-like Plasma Liping Zhu, Woochang Lee, Gunsu Yun, Hyeon K. Park Pohang University of Science and Technology, Pohang 790-784, Korea 85 th KPS Meeting 85 KPS Meeting (Changwon, October 21-23, 2009)

  2. Contents � Introduction of MIST code Main plasma profiles and parameters used in this study � � Impurity distribution in ITER-like plasma � Steady state case Time dependent case � Determination of impurity transport coefficients in � ITER-like plasma

  3. I. Introduction of MIST code (1) An impurity transport simulation code, Multiple Ionization State Transport (MIST), p y p , p p ( ), which is designed for circular cross-section plasma , has been used to study the radial distribution of impurities in various charge states in the standard ITER-like plasma parameters. The code solves for density of ions in each charge state of the impurity and their associated radiation rates using atomic physics appropriate for these low-density and high-temperature plasmas high-temperature plasmas. The expression governing the time evolution of a given impurity charge-state density in space and time has the form: in space and time has the form: ∂ ∂ n n 1 = − Γ + − + + − + q q ( r ) I n ( I R n ) R n S − − + + ∂ ∂ τ q q 1 q 1 q q q q 1 q 1 q t r r q Γ Γ where where is particle flux density, its general form is is particle flux density its general form is q ∂ n Γ = − + υ q D r ( ) ( ) r n ∂ q q q q r υ υ D r : particle diffusion coefficient, : particle diffusion coefficient : convective velocity : convective velocity D r ( ) ( ) q r ( ) ( ) r q τ , , and are functions of charge state, radius, and time. I R S q q q q

  4. I. Introduction of MIST code (2) Assuming symmetry in all but the radial ssu g sy e y bu e d one zone coordinate (cylindrical geometry), the plasma has been divided into 50 radial a zones from the plasma center to the scrape off layer. o r R The impurity transport coefficients can be determined by ffi i t b d t i d b comparing the code results with measured local radiation power or spectral line intensities spectral line intensities .

  5. II. Plasma profiles & main parameters used in this study ITER is a joint international research and development project that aims to emonstrate the scientific and technical feasibility of fusion power. 25 [ ] Major radius, R 620 cm 20 [ [ ] ] T e T Minor radius, a i di cm 200 [ ] Center 23.3 T e , T i (keV) 15 T keV T i e [ ] Edge keV 0.43 T e 10 [ [ ] ] T T Center Center 19.3 19.3 keV keV i i [ ] Electron & ion T Edge 2.4 keV 5 i temperature ⎡ ⎤ 10 m − n 19 3 Center 10.67 ⎣ ⎦ e 0 ⎡ 10 m − ⎤ n 19 3 Edge 0.55 ⎣ ⎦ 0.0 0.2 0.4 0.6 0.8 1.0 e Normalized minor radius (r/a) ( ) 8 12 7 10 6 or q 5 8 Safety facto -3 ) 13 cm 4 6 n e (x10 3 4 2 2 2 1 1 Electron density Safety factor q 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Normalized minor radius (r/a) Normalized minor radius (r/a) Reference: ‘Design study for ITER High Resolution x-ray Spectroscopy Array’, Pobin Barnsley, EFDA-JET-CP(04)01/09

  6. Impurity concentration determination for steady state case The main limitation to allowed impurity concentration is not the contribution to Zeff, but the impurity radiated power, there being a broad operating range between about 100kW and 10 MW. r = × 2 Reference: D D 0,2 D D =1 D =0.1~3.0m /s D(r)=D +D ( ) AREXP AR AC AREXP AC AC AR a r = = × − × (‘Power Radiated from ITER and CIT by Impurities’, J. Cummings, PPPL-2702) C 0 ~10 V r ( ) C [ 2 D(r) ] VR VR 2 a a r = × × = × We use : V r ( ) 0.1 [-2 D r a ( ) ] 4 2 D 1 10 cm / s 2 10 10 10 He He 9 Be 8 Be 9 10 C 7 C Cu Cu 6 8 Ar 10 Ar 5 wer(Watts) Kr Kr 7 10 4 Radiated pow 6 10 10 Z eff f 3 3 5 10 2 4 10 3 10 2 1 10 -5 -4 -3 -2 -1 -5 -4 -3 -2 -1 10 10 10 10 10 10 10 10 10 10 Impurity concentration (n imp /n e ) Impurity concentration (n imp /n e ) Total radiated power Z effective / / n n n n Maximum impurity concentration Maximum impurity concentration i imp e He Be C Cu Ar Kr 1.5 10 − 6 10 − 8 10 − × × × 4 5 4 25% 4% 1.5%

  7. III. Impurity distribution in steady state case (1) 14 10 Impurity concentration He2+ He2+ 13 10 He Be C Cu e Density (cm -3 ) Be4+ 12 10 10% 1% 0.5% 2e-5 C6+ He2+ 11 10 He1+ The 4 impurity species are The 4 impurity species are Charge State Be4+ Be3+ Be2+ calculated respectively. 10 10 C6+ C5+ C4+ 9 C3+ 10 C2+ Radiated power (MW): p ( ) 8 10 0.0 0.2 0.4 0.6 0.8 1.0 He Be C Cu Normalized minor radius (r/a) Impurity charge state density (He, Be, C) 4.4 2.27 3.25 1.16 11 9x10 C 29 Cu29+ Cu29+ 9 Cu28+ 11 1.6x10 8x10 Cu28+ Cu27+ Cu27+ 2 /s) Cu26+ 11 7x10 Cu27+ 9 Cu26+ 1.4x10 Cu25+ particles/cm -3 ) Cu25+ Cu24+ 11 6x10 nsity (cm Cu23+ Cu24+ 9 1.2x10 11 Cu22+ 5x10 Cu23+ Cu29+ Cu21+ Cu22+ Cu28+ 11 Cu20+ 9 4x10 1.0x10 Cu21+ ansport flux density (p Charge State De Cu20+ 11 3x10 8 8.0x10 Cu28+ 11 2x10 Cu29+ 8 6.0x10 11 1x10 Cu26+ 0 8 4.0x10 Cu26+ 11 -1x10 Cu25+ 8 8 Tra 2 0 10 2.0x10 Cu27+ 11 -2x10 0.0 11 -3x10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Normalized minor radius (r/a) Normalized minor radius (r/a) Impurity charge state density (Cu) Transport flux density (Cu)

  8. III. Impurity distribution in steady state case (2) -1 1.4 10 He He Be Be C C C C 1.3 Cu Cu n power(W/cm 3 ) 1.2 He -2 1.1 10 Z eff Local radiation Z 1.0 C Be 0.9 Cu -3 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Normalized minor radius (r/a) Normalized minor radius (r/a) Effective atomic number Local radiation power 16 16 10 10 He1+ He1+ 15 C2+ 10 C3+ He1+ C4+ 14 2 /ion) 10 C5+ os/cm 3 /sec) C3+ 15 13 otos/s/cm 10 10 C2+ C2+ 12 C5+ 10 C5+ C3+ Line brightness (pho Line emission(photo 11 10 He1+ C4+ 14 10 10 10 C3+ 9 C4+ 10 C5+ C3+ C3+ 8 C3+ 10 C5+ C3+ 13 7 10 10 10 10 C5+ 6 10 0 50 100 150 200 250 300 350 400 1200 1600 0.0 0.2 0.4 0.6 0.8 1.0 Wavelength (Angstrom) Normalized minor radius (r/a) Line emission (photos/cm3/s) Line emission brightness (photos/s/cm2/ion)

  9. IV. Impurity distribution in time dependent case (1) Impurity charge state density pu y c a ge s a e de s y Injected Krypton atom number: 5.3e17 jec ed yp o a o u be : 5.3e 7 10 3.0x10 9 2.4x10 Kr36+ Kr35+ Kr34+ Kr20+ Kr33+ 10 2.5x10 Kr1+ Kr32+ 9 2.0x10 Kr19+ Kr31+ Kr30+ Kr21+ m -3 ) m -3 ) Kr29+ rge state density (cm rge state density (cm Kr28+ Kr28+ 10 10 2.0x10 9 Kr27+ 1.6x10 Kr26+ Kr25+ Kr24+ 10 Kr23+ 1.5x10 9 1.2x10 Kr22+ Kr21+ Kr20+ Kr19+ 10 1.0x10 Kr18+ 8 8.0x10 Kr17+ Char Kr16+ Kr16+ Cha Kr15+ Kr14+ 9 8 5.0x10 time = 0.0 s time = 0.001 s 4.0x10 Kr13+ Kr12+ Kr11+ Kr10+ Kr9+ 0.0 0.0 0 40 80 120 160 200 0 40 80 120 160 200 Minor radius (cm) Minor radius (cm) ( ) 8 5x10 Kr36+ Kr36+ Kr35+ 8 Kr35+ 2.0x10 Kr34+ Kr34+ Kr26+ Kr33+ Kr34+ Kr33+ Kr32+ 8 Kr32+ 4x10 Kr31+ Kr31+ (cm -3 ) Kr30+ Kr25+ 8 cm -3 ) 1.6x10 Kr30+ Kr29+ Kr29+ Kr28+ Kr27+ harge state density (c Kr27 Kr27+ Kr28 Kr28+ Charge state density 8 Kr26+ Kr27+ 3x10 Kr25+ Kr26+ 8 Kr33+ 1.2x10 Kr24+ Kr25+ Kr23+ Kr24+ Kr22+ Kr23+ Kr21+ Kr22+ 8 Kr20+ 2x10 7 Kr21+ Kr32+ 8.0x10 Kr19+ Kr20+ Kr18+ Kr17+ Kr16+ Kr15+ Kr15+ Ch C 8 7 1x10 4.0x10 Kr14+ time = 0.05s Kr13+ time = 0.01s Kr12+ Kr11+ Kr10+ 0.0 Kr9+ 0 0 40 80 120 160 200 0 40 80 120 160 200 Minor radius (cm) Minor radius (cm)

  10. IV. Impurity distribution in time dependent case (2) 8 7 1.2x10 5.0x10 Kr36+ Kr36+ Kr35+ Kr35+ 7 7 Kr35+ K 35+ 4.5x10 Kr34+ Kr34+ Kr34+ Kr34+ 8 1.0x10 Kr33+ Kr33+ 7 4.0x10 Kr32+ Kr32+ Kr31+ nsity (cm -3 ) Kr31+ nsity (cm -3 ) 7 3.5x10 Kr30+ Kr30+ 7 8.0x10 Kr29+ Kr29+ 7 3.0x10 Kr35+ 7 7 7 7 Charge state de 6.0x10 6 0 10 Charge state de 2.5x10 2 5 10 7 2.0x10 7 Kr33+ 4.0x10 7 1.5x10 Kr33+ 7 1.0x10 Kr35+ 7 Kr36+ 2.0x10 Kr32+ 6 6 Kr32+ Kr32+ 5 0 10 5.0x10 0.0 0.0 0 40 80 120 160 200 0 40 80 120 160 200 time = 0.15s Minor radius (cm) Minor radius (cm) time = 0.5s Kr36+ Kr36+ Kr36+ K 36+ 7 7 1.4x10 Kr35+ Kr35+ Kr34+ Kr34+ Kr34+ 6 2.0x10 Kr33+ Kr34+ Kr33+ 7 1.2x10 Kr32+ Kr32+ Kr31+ sity (cm -3 ) sity (cm -3 ) Kr31+ Kr30+ Kr30+ 7 1.0x10 Kr29+ Kr29+ 6 1.5x10 Kr35+ Kr35+ Kr35 Charge state dens Charge state dens 6 8.0x10 6 1.0x10 6 6.0x10 6 4.0x10 5 5.0x10 Kr36+ Kr36+ Kr33+ Kr33+ Kr33+ Kr33+ 6 2.0x10 Kr32+ Kr32+ 0.0 0.0 0 40 80 120 160 200 0 40 80 120 160 200 time = 1.5s time = 3.0s Minor radius (cm) Minor radius (cm)

Recommend


More recommend