interacting impurity out of equilibrium an exact solution
play

Interacting impurity out-of- equilibrium: an exact solution Edouard - PowerPoint PPT Presentation

Interacting impurity out-of- equilibrium: an exact solution Edouard Boulat Universit Paris Diderot Collaborators: Hubert Saleur, Peter Schmitteckert Outline Non-equilibrium in impurity models: Background General framework


  1. Interacting impurity out-of- equilibrium: an exact solution Edouard Boulat Université Paris Diderot Collaborators: Hubert Saleur, Peter Schmitteckert

  2. Outline  Non-equilibrium in impurity models: • Background • General framework  Introduction of the IRL model  Analytical approach: TBA  Numerical approach: td-DMRG

  3. Background Out-of-equilibrium in quantum impurities • Keldysh approach: perturbative / hard to resum • Dressed TBA (Quantum Hall edge states tunneling) (P.Fendley, A.W.W.Ludwig, H.Saleur 1995) • Map to equilibrium problem (boundary sine Gordon model) (V.Bazhanov, S.Lukyanov, A.B.Zamolodchikov 1999) • Effectively non-interacting system (Toulouse point) (A. Komnik, O. Gogolin 2003) • Scattering Bethe Ansatz (IRLM, Anderson model) (P.Mehta, N.Andrei 2006) • “Impurity conditions” (IRLM) (B.Doyon 2007) 2d INSTANS Summer Conference - Florence 2008

  4. General framework (1) (2) • No interaction: Landauer Büttiker formula     T ( E ) I  dE f 1 ( E )  f 2 ( E ) scattering approach: ฀  Fermi functions Landauer-Büttiker formula for electrons in wires (1) and (2) transmission probability 2d INSTANS Summer Conference - Florence 2008

  5. General framework (1) (2) • No interaction: Landauer Büttiker formula     T ( E ) I  dE f 1 ( E )  f 2 ( E ) • Interaction: particle production ! ฀   + + … 2d INSTANS Summer Conference - Florence 2008

  6. General framework  + + … Approach:  describe the baths (Hilbert space of the wires) in terms of quasiparticles with the following properties: “equilibrium” (i) they diagonalize the scattering on the impurity, integrability no particle production (diagonal boundary scattering) further (severe) (ii) they survive out of equilibrium. requirement not destroyed by the voltage  use the Landauer Büttiker formula for this gas of (interacting) quasiparticles to compute the current.  non-Fermi bath 2d INSTANS Summer Conference - Florence 2008

  7. Impurity model: IRLM I nteracting R esonant L evel M odel • Simplest quantum impurity model supporting both interactions and non-equilibrium • Describes strongly polarized electrodes ( spinless ) coupled to nanostructure via:   • tunnelling: , 1 2 U • Coulomb repulsion:   1 2 (1) (2) U U Resonance: V G = V /2 I V G V 2d INSTANS Summer Conference - Florence 2008

  8. IRLM (2) Single channel → mapping to 1D (1) (2)   Free 1D wire: Free 1D wire: Resonant level: d 1 2 H  H 0  H B  H V   H V  V      †      †  †  dx  1   2 ( x ) H iv dx ( x ) 1 2 2 0 F a x a    -  a 1 , 2       † (0)   2  † (0) †  †  d † d  1   d d † d H B   1  d  U :  1 :(0)  :  2 :(0) ฀  1 2 1 2 2 ฀   d =0 at resonance 2d INSTANS Summer Conference - Florence 2008 ฀ 

  9. Mapping to Kondo Integrable (in equilibrium) (V.Filyov, P.Wiegmann 1978) †    d S Mapping to anisotropic Kondo †   z 1 d d S model (P.Wiegmann, A.M.Finkel’stein 1980) 2 Kondo temperature T K ↔ Hybridization temperature T B 0 T B Strong Weak T coupling coupling Question: out-of-equilibrium + strong coupling? 2d INSTANS Summer Conference - Florence 2008

  10. Bosonization (I) even/odd basis        1 ( )  e 1 1 2 2        1 ( )  o 2 1 1 2 H (  ) ฀  2d INSTANS Summer Conference - Florence 2008

  11. Bosonization (I)     i 4 e a even/odd a basis bosonization        1 ( )  e 1 1 2 2        1 ( )  o 2 1 1 2 H (  ) ฀  2d INSTANS Summer Conference - Florence 2008

  12. Bosonization (I) unitary transformation: cancels interaction along S z     i 4    e z a U even/odd  i ( ) S ( )( 0 ) U  e o e a basis bosonization        1 ( )  e 1 1 2 2        1 ( )  o 2 1 1 2 H (  ) ฀  2d INSTANS Summer Conference - Florence 2008

  13. Bosonization (I) unitary transformation: cancels interaction along S z     i 4    e z a U even/odd  i ( ) S ( )( 0 ) U  e o e a basis bosonization        1 ( )  e 1 1 2 2      ( 1   )        ( 2 U ) U 1 ( )  e o  2  change o 2 1 1 2 8 D      H (  ) (   1 ) ( 2 U ) U  of basis o e  2 8 D ฀  2d INSTANS Summer Conference - Florence 2008

  14. Bosonization (I) unitary transformation: cancels interaction along S z     i 4    e z a U even/odd  i ( ) S ( )( 0 ) U  e o e a basis bosonization        1 ( )  e 1 1 2 2      ( 1   )        ( 2 U ) U 1 ( )  e o  2  change o 2 1 1 2 8 D      H (  ) (   1 ) ( 2 U ) U  of basis o e  2 8 D •   decouples anisotropic Kondo model • scaling dimension      ฀  H H ( ) H ( ) H     2 1 1 U 1   ( ) ( ) D 1 0 0 B  4 4 4 1 → (  )       T B  8 ( 0 ) i D 1  D  H e S h.c. B    • duality U 2 U (A.Schiller, N.Andrei 2007) ฀  2d INSTANS Summer Conference - Florence 2008

  15. Voltage operator (1)  Simple theory: diagonal boundary scattering H = H +  H- trivial scattering Kondo scattering  BUT: quasiparticles DESTROYED by the voltage ฀      sin    H V  V 2  D  x    (1  U  )  x   D    (1  U  )   cos  2   sin 2       i / 2 i e H- H + 1 2 → • mixes and • worse: non-local wrt. the Kondo soliton creation operator ฀  (exceptions: D =1/2, D =1/4 ) 2d INSTANS Summer Conference - Florence 2008 ฀  ฀ 

  16. Bosonization (II)        wire 1 wire 2 U(1) SU ( 2 ) 1 † †       z relative charge 1 J ( ) iso-spin → 1 1 2 2 2 total charge    †  mix the wires J 1 2 2d INSTANS Summer Conference - Florence 2008

  17. Bosonization (II)        wire 1 wire 2 U(1) SU ( 2 ) 1 † †       z relative charge 1 J ( ) iso-spin → 1 1 2 2 2 total charge    †  mix the wires J 1 2 H (  ) bosonization     i 4 e 1 ( 2 ) 1 ( 2 ) ฀  2d INSTANS Summer Conference - Florence 2008

  18. Bosonization (II)        wire 1 wire 2 U(1) SU ( 2 ) 1 † †       z relative charge 1 J ( ) iso-spin → 1 1 2 2 2 total charge    †  mix the wires J 1 2 H (  ) iso-spin/charge basis  c  2 (  1   2 ) 1 bosonization   2 (  1   2 ) 1     i 4 e 1 ( 2 ) 1 ( 2 ) ฀  ฀  ฀  2d INSTANS Summer Conference - Florence 2008

  19. Bosonization (II)        wire 1 wire 2 U(1) SU ( 2 ) 1 † †       z relative charge 1 J ( ) iso-spin → 1 1 2 2 2 total charge    †  mix the wires J 1 2 H (  ) unitary transformation iso-spin/charge basis  z U 2  i ( ) S ( 0 ) U  c e  c  2 (  1   2 ) 1 bosonization   2 (  1   2 ) 1     i 4 e 1 ( 2 ) 1 ( 2 ) ฀  ฀  ฀  2d INSTANS Summer Conference - Florence 2008

  20. Bosonization (II)        wire 1 wire 2 U(1) SU ( 2 ) 1 † †       z relative charge 1 J ( ) iso-spin → 1 1 2 2 2 total charge    †  mix the wires J 1 2 H (  ) unitary transformation iso-spin/charge basis  z U 2    i ( ) S ( 0 )   U g  c  e i 2   e  c  2 (  1   2 ) 1    convert to  bosonization g e  i 2       2 (  1   2 )   SU(2) 1 variables 1      i 4 e 1 ( 2 ) 1 ( 2 ) ฀  ฀  ฀  ฀  2d INSTANS Summer Conference - Florence 2008

Recommend


More recommend