transport coefficients of qcd at nlo
play

Transport coefficients of QCD at NLO Jacopo Ghiglieri, CERN in - PowerPoint PPT Presentation

Transport coefficients of QCD at NLO Jacopo Ghiglieri, CERN in collaboration with Guy Moore and Derek Teaney SEWM2018, Barcelona, June 27 2018 Outline Transport coefficients: introduction and motivation Transport from an effective


  1. Transport coefficients of QCD at NLO Jacopo Ghiglieri, CERN in collaboration with Guy Moore and Derek Teaney SEWM2018, Barcelona, June 27 2018

  2. Outline • Transport coefficients: introduction and motivation • Transport from an effective kinetic theory • (almost) NLO kinetic theory and first-order coefficients 
 (full) NLO kinetic theory for jets: pedagogical review in JG Teaney QGP5 (2015), gritty details in JG Moore Teaney JHEP1603 (2015) 
 (almost) NLO 1 st -order JG Moore Teaney, JHEP1803 (2018) • Second-order relaxation: results and bounds 
 JG Moore Teaney, 1805.02663

  3. Overview

  4. 
 
 
 
 Hydrodynamics • Field theories admit a long-wavelength hydrodynamical limit. Hydrodynamics: Effective Theory based on a gradient expansion of the flow velocity • For hydro fluctuations with local flow velocity v around an equilibrium state (with temp. T ), at first order in the gradients and in v 
 T 00 = e, T 0 i = ( e + p ) v i ✓ ∂ i v j + ∂ j v i � 2 ◆ T ij = ( p � ζ r · v ) δ ij � η 3 δ ij r · v Navier-Stokes hydro, two transport coefficients : bulk and shear viscosity

  5. <latexit sha1_base64="TbXj0+SuQ4apUdeLKfrq2cCpxBQ=">ACY3icbVFdS+NAFJ3E9auGj/eloXBsiCoJRFhfVkQfHRBatCE8vN9KYOTiZhZrKYDfMnfPNF/+H09rC2u6FgcO536dSUvBtQnDF89f+LK4tLy2lr7ur6xGWxt3+iUgy7rBCFuktBo+ASu4YbgXelQshTgbfp48Uof/sHleaFvDZ1iUkOQ8kzsA4qh/8vb5vnmr76yjOFLCmicte2qYJk3UCcdxGM4CG6MBaz/L51SH0wYWD0prYwmpgP4TdSPD2tJ+0J4q6TyY1rbJK76wXM8KFiVozRMgNa9KCxN0oAynAm0rbjSWAJ7hCH2HJSQo06a8YaW/nDMgGaFck8aOmb/rWg17rOU6fMwTzo2dyI/F+uV5nsNGm4LCuDkn0MyipBTUFHhtMBV8iMqB0AprjblbIHcGYb9y0tZ0I0e/I8uDnuRGEn+n3SPjuf2LFCvpE9sk8i8pOckUtyRbqEkVdvydv0Au/NX/O3/d0Pqe9NanbIp/C/vwOvg7Af</latexit> <latexit sha1_base64="TbXj0+SuQ4apUdeLKfrq2cCpxBQ=">ACY3icbVFdS+NAFJ3E9auGj/eloXBsiCoJRFhfVkQfHRBatCE8vN9KYOTiZhZrKYDfMnfPNF/+H09rC2u6FgcO536dSUvBtQnDF89f+LK4tLy2lr7ur6xGWxt3+iUgy7rBCFuktBo+ASu4YbgXelQshTgbfp48Uof/sHleaFvDZ1iUkOQ8kzsA4qh/8vb5vnmr76yjOFLCmicte2qYJk3UCcdxGM4CG6MBaz/L51SH0wYWD0prYwmpgP4TdSPD2tJ+0J4q6TyY1rbJK76wXM8KFiVozRMgNa9KCxN0oAynAm0rbjSWAJ7hCH2HJSQo06a8YaW/nDMgGaFck8aOmb/rWg17rOU6fMwTzo2dyI/F+uV5nsNGm4LCuDkn0MyipBTUFHhtMBV8iMqB0AprjblbIHcGYb9y0tZ0I0e/I8uDnuRGEn+n3SPjuf2LFCvpE9sk8i8pOckUtyRbqEkVdvydv0Au/NX/O3/d0Pqe9NanbIp/C/vwOvg7Af</latexit> <latexit sha1_base64="TbXj0+SuQ4apUdeLKfrq2cCpxBQ=">ACY3icbVFdS+NAFJ3E9auGj/eloXBsiCoJRFhfVkQfHRBatCE8vN9KYOTiZhZrKYDfMnfPNF/+H09rC2u6FgcO536dSUvBtQnDF89f+LK4tLy2lr7ur6xGWxt3+iUgy7rBCFuktBo+ASu4YbgXelQshTgbfp48Uof/sHleaFvDZ1iUkOQ8kzsA4qh/8vb5vnmr76yjOFLCmicte2qYJk3UCcdxGM4CG6MBaz/L51SH0wYWD0prYwmpgP4TdSPD2tJ+0J4q6TyY1rbJK76wXM8KFiVozRMgNa9KCxN0oAynAm0rbjSWAJ7hCH2HJSQo06a8YaW/nDMgGaFck8aOmb/rWg17rOU6fMwTzo2dyI/F+uV5nsNGm4LCuDkn0MyipBTUFHhtMBV8iMqB0AprjblbIHcGYb9y0tZ0I0e/I8uDnuRGEn+n3SPjuf2LFCvpE9sk8i8pOckUtyRbqEkVdvydv0Au/NX/O3/d0Pqe9NanbIp/C/vwOvg7Af</latexit> <latexit sha1_base64="TbXj0+SuQ4apUdeLKfrq2cCpxBQ=">ACY3icbVFdS+NAFJ3E9auGj/eloXBsiCoJRFhfVkQfHRBatCE8vN9KYOTiZhZrKYDfMnfPNF/+H09rC2u6FgcO536dSUvBtQnDF89f+LK4tLy2lr7ur6xGWxt3+iUgy7rBCFuktBo+ASu4YbgXelQshTgbfp48Uof/sHleaFvDZ1iUkOQ8kzsA4qh/8vb5vnmr76yjOFLCmicte2qYJk3UCcdxGM4CG6MBaz/L51SH0wYWD0prYwmpgP4TdSPD2tJ+0J4q6TyY1rbJK76wXM8KFiVozRMgNa9KCxN0oAynAm0rbjSWAJ7hCH2HJSQo06a8YaW/nDMgGaFck8aOmb/rWg17rOU6fMwTzo2dyI/F+uV5nsNGm4LCuDkn0MyipBTUFHhtMBV8iMqB0AprjblbIHcGYb9y0tZ0I0e/I8uDnuRGEn+n3SPjuf2LFCvpE9sk8i8pOckUtyRbqEkVdvydv0Au/NX/O3/d0Pqe9NanbIp/C/vwOvg7Af</latexit> Estimating η (or why is η /s natural) T 00 = e, T 0 i = ( e + p ) v i ✓ ◆ ∂ i v j + ∂ j v i � 2 T ij = ( p � ζ r · v ) δ ij � η 3 δ ij r · v • Rewrite the first-order T as η T xy = � e + p r x T 0 y • η /(e+p) is a (first-order) relaxation timescale. With e+p=sT one gets to the natural, dimensionless η /s • In cases with well-defined quasi-particles one has naturally η s ∼ Tl mfp

  6. 
 Estimating η (or why is η /s natural) • Weak coupling: long • Strong coupling: short distances between distances between collisions, easy collisions, little diffusion. Large η /s 
 diffusion. Small η /s

  7. 
 
 
 Estimating η (or why is η /s natural) • (Mean free path) -1 ~ cross section x density 
 s ∼ Tl mfp ∼ T 1 η n σ ∼ T 2 σ • Cross section in a perturbative gauge theory ( T only scale*) 
 s ∼ 1 σ ∼ g 4 η g 4 T 2 * Coulomb divergences and screening scales ( m D ~ gT ) in gauge theories 
 1 σ ∼ g 4 η T 2 ln(1 /g ) s ∼ g 4 ln(1 /g ) N = 4 • From holography one instead has η /s= 1/(4 ! ) (for 
 SYM) and a conjectured lower limit 
 Kovtun Son Starinets Policastro PRL87 (2001) PLR94 (2004)

  8. Theory approaches to (QCD) transport coefficients 2 • pQCD: QCD action (and EFTs and kinetic theories thereof). Real world: extrapolate from g ≪ 1 to α s ~0.3 • lattice QCD: Euclidean QCD action. Real world: analytically continue to Minkowskian domain 
 (see H. Meyer’s talk for a related topic) • AdS/CFT: action, weak and strong N =4 coupling. Real world: extrapolate to QCD

  9. Motivation ? • Holography: Kovtun Son Starinets Policastro PRL87 (2001) PLR94 (2004), λ -3/2 corrections: Buchel et al (2005-2008) • pQCD: Arnold Moore Yaffe (AMY) (2000-2003)

  10. Motivation ? • Add NLO to the right, understand kinetic theory beyond LO

  11. The effective kinetic theory

  12. The weak-coupling picture ∼ Hard particles, P~T Soft field Soft α s = g 2 field 4 π modes P~gT Figure by D. Teaney • Hard (quasi)-particles carry most of the stress-energy tensor. (Parametrically) largest contribution to thermodynamics

  13. The weak-coupling picture ∼ Hard particles, P~T Soft field Soft α s = g 2 field 4 π modes P~gT Figure by D. Teaney • The gluonic soft fields have large occupation numbers ⇒ they can be treated classically 1 ω ⇠ 1 T ω ∼ gT n B ( ω ) = ' e ω /T � 1 g

  14. Weak-coupling thermodynamics 1.0 0.8 0.6 χ u 2 = ∂ 2 p ( T, µ ) χ u 2 ∂ µ 2 SB SB u HTLpt 3-loop truncated 0.4 BNL-B WB 0.2 HTLpt 1-loop exact DR 0.0 200 400 600 800 1000 T H MeV L Mogliacci Andersen Strickland Su Vuorinen JHEP1312 (2013) • Successful for static (thermodynamical) quantities. Possibility of solving the soft sector non-perturbatively (3D theory on the lattice). See talk by P. Schicho tomorrow

  15. Weak-coupling thermodynamics 1.0 0.8 0.6 χ u 2 = ∂ 2 p ( T, µ ) χ u 2 ∂ µ 2 SB SB u HTLpt 3-loop truncated 0.4 BNL-B WB 0.2 HTLpt 1-loop exact DR 0.0 200 400 600 800 1000 T H MeV L Mogliacci Andersen Strickland Su Vuorinen JHEP1312 (2013) • Extra motivation: understand how to set up a similar resummation program for kinetics

  16. The effective kinetic theory Baym Braaten Pisarski Arnold Moore Yaffe Baier Dokshitzer Mueller Schiff Son Peigné Wiedemann Gyulassy Wang Aurenche Gelis Zaraket Blaizot Iancu . . .

  17. The effective kinetic theory • The effective theory is obtained by integrating out (off- shell) quantum fluctuations • Boltzmann equation for the single-particle phase space- distribution: its convective derivative equals a collision operator ( ∂ t + v p · r ) f ( p , x , t ) = C [ f ] • In other words at weak coupling the underlying QFT has well- defined quasi-particles. These are weakly interacting with a mean free time (1/ g 4 T ) larger than the actual duration of an individual collision (1/ T ) • Justified at weak coupling, can be extended to factor in non- perturbative contributions

  18. 
 
 
 The AMY kinetic theory • Effective Kinetic Theory (EKT) for the phase space density of quarks and gluons 
 ✓ ∂ s ◆ f ( p ) = C 2 ↔ 2 + C 1 ↔ 2 ∂ t + v · r x • At leading order : elastic, number-preserving 2 ↔ 2 processes and collinear, number-changing effective 1 ↔ 2 processes AMY (2003) 
 ( ω , q ⊥ ) p 0 k 0 ( p, 0) Q ( p − ω , − q ⊥ ) p k Landau-Pomeranchuk-Migdal resummation (Wait for the next talk )

  19. Transport coeffs from the EKT

Recommend


More recommend