Scaling and Rare Events near Excitation Threshold of a Parametric Oscillator Mark Dykman Department of Physics and Astronomy, Michigan State University In collaboration with Z. R. Lin, RIKEN Center for Emergent Matter Science Y. Nakamura, RIKEN Center for Emergent Matter Science
Example: quasienergy states Eigenstates of a periodically driven system are not stationary : ๐โ๐ฬ = ๐ผ ๐ข ๐ ๐ผ ๐ข = ๐ผ 0 ๐ , ๐ โ ๐๐ cos ๐ ๐บ ๐ข , ๐ข + 2๐ โ ๐ฃ ๐ ๐ข , ๐ ๐ ๐ข = ๐ โ๐๐๐ โ ๐ฃ ๐ = ๐ฃ ๐ ( ๐ข ) ๐ ๐บ quasienergy โก Floquet eigenvalue; quantization: ๐ โ ๐ ๐ Driven mesoscopic vibrational systems of current interest: Josephson junctions, cavity modes in optical and superconducting cavities, nanomechanical systems, cold atoms,โฆ CNT
Example: quasienergy states Eigenstates of a periodically driven system are not stationary: ๐โ๐ฬ = ๐ผ ๐ข ๐ ๐ผ ๐ข = ๐ผ 0 ๐ , ๐ โ ๐๐ cos ๐ ๐บ ๐ข , ๐ข + 2๐ โ ๐ฃ ๐ ๐ข , ๐ ๐ ๐ข = ๐ โ๐๐๐ โ ๐ฃ ๐ = ๐ฃ ๐ ( ๐ข ) ๐ ๐บ quasienergy โก Floquet eigenvalue; quantization: ๐ โ ๐ ๐ Relaxation, ๐ผ = ๐ : inter-state transitions with emission of photons, phonons, etc. Quasienergy states Fock states | ๐ + ๐โช E 3 Quasienergy states are linear combinations of Fock states. Inter-level transitions down in energy, E 2 | ๐ + ๐โช ๐ ๐บ๐บ๐บ๐บ โ | ๐ ๐บ๐บ๐บ๐บ โ 1 โช , correspond to inter-quasi- F ( t ) | ๐ + ๐โช energy level transitions ๐ โ ๐ ยฑ ๐ , โupโ and E 1 โdownโ in quasienergy. Even where the energy-level | ๐โช width ฮ โช ฮ๐น , we can have ฮ โฅ ฮ๐ E 0 Problems: distribution over the quasienergy states? Effects of the breaking of the discrete-time symmetry? Related features of quantum fluctuations?
Parametric oscillator + ฮ + ฯ + ฯ + ฮณ = ๏ฆ ๏ฆ ๏ฆ 2 3 Classical phenomenological description, ๐ = 1: q 2 q ( F cos t ) q q 0 0 F Weak damping, resonant modulation ๐ ๐บ โ 2 ๐ 0 โ excitation for weak field, small nonlinearity. The period-two states differ in phase by ๐ - spontaneous breaking of discrete time-translation symmetry
Bifurcation diagram + ฮ + ฯ + ฯ + ฮณ = ๏ฆ ๏ฆ ๏ฆ 2 3 q 2 q ( F cos t ) q q 0 2 Critical field strength: ๐ ๐บ = 2๐ฅ๐ ๐บ , ๐ ๐บ โช ๐ 0 0 F Relevant dimensionless parameters: โ Scaled frequency detuning ๐ ๐ = ๐ ๐บ โ 2 ๐ 0 2 ฮ Scaled field amplitude ๐ ๐ = ๐ / ๐ ๐บ 3 stable states no vibrations critical point 2 stable states more complicated than just symmetry-breaking co-dimension 2 bifurcation point
The rotating wave approximation (RWA) + ฮ + ฯ + ฯ + ฮณ = ๏ฆ ๏ฆ ๏ฆ 2 3 Change to variables that slowly vary over the q 2 q ( F cos t ) q q 0 0 F vibration period: 1 1 1 ๐ ๐ข = ๐ท ๐ ๐ ๐ ๐ ๐ + ๐๐ ๐๐ ๐ , ๐ ๐ข = โ 2 ๐ ๐บ ๐ท ๐ ๐ ๐๐ ๐ โ ๐๐ ๐ ๐ ๐ , ๐ = 2 ๐ ๐บ ๐ข + 4 ๐ ; ๏ฟฝ , โ ๏ฟฝ = 3| ๐ฟ | โ / ๐ ๐บ ๐ ๐บ Quantum mechanics: ๐ , ๐ = โ๐โ โ ๐ , ๐ = โ๐ โ dimensionless Planck constant ๏ฟฝ โช 1 Approximations: slow decay, ฮ โช ๐ 0 , + weak quantum noise, โ depends on the nonlinearity!
Quantum Langevin equations In slow time ๐ ๐ ๐ ฬ = โ ๏ฟฝ [ ๐ , ๐ ] โ ๐ + ๐ ๐ ๐ , ๐ฬ = โ ๏ฟฝ [ ๐ , ๐ ] โ ๐ + ๐ ๐ ๐ โ โ Quantum noise is ๐ -correlated in slow time: = 2 ๐ธ๐ ๐ โ ๐ โฒ ๐ ๐ ๐ ๐ ๐ ๐ โฒ = ๐ ๐ ๐ ๐ ๐ ๐ โฒ ๏ฟฝ + 1 โ1 , [ ๐ ๐ ๐ , ๐ ๐ ๐ โฒ ] = 2๐โ ๏ฟฝ ๐ ๏ฟฝ ๐ ( ๐ โ ๐ โฒ ) โ ๏ฟฝ = ๐ โ๐ 0 ๐บ ๐ถ ๐ ๐ธ = โ 2 , ๐ โ 1 Noise intensity ๐ธ โ โ for ๐ ๐ถ ๐ < โ๐ 0 ; for ๐ ๐ถ ๐ โซ โ๐ 0 , ๐ธ โ ๐ ๐ ๐น , ๐ธ = ๐ ๐ ๐น ๐ + ๐ธ ๐ ๐ โ ๐ ๐ ๐ ๐ ๐น ๐ + ๐ธ ๐ + ๐ ๐ ๐ ๐ ( ๐น๐ธ + ๐ธ๐น )
Adiabatic approximation near criticality ๐ ๐ ๐ ฬ = โ ๏ฟฝ [ ๐ , ๐ ] โ ๐ + ๐ ๐ ๐ , ๐ฬ = โ ๏ฟฝ [ ๐ , ๐ ] โ ๐ + ๐ ๐ ๐ โ โ Linear equations without noise near the critical point, ๐ ๐ = 1, ๐ ๐ = 0 : ๐ ฬ โ ๐ ๐ฬ โ โ ๐ ๐ โ 1 ๐ โ ๐ ๐ ๐ , ๐ + 1 ๐ + ๐ ๐ ๐ Q is a โsoft modeโ ๐ ๐ adiabatically follows ๐ ๐ โ on times ๐ โซ 1 ฮt โซ 1 eliminate ๐ ๐ โ P an adiabatic classical equation for the soft mode with quantum noise ๐ ฬ = โ๐ ๐ ๐ ๐ + ๐ ๐ ๐ , Q ๐ ๐ = 1 ๐ 2 โ ๐ ๐ 4 ๐ 4 + 1 2 โ ๐ 2 โ 1 12 ๐ 6 4 ๐ ๐ ๐ an analog of the ๐ 6 Landau theory reminder: ๐ ๐ = ๐ ๐ โ , ๐ ๐ โ ๐ ๐บ โ 2 ๐ 0 ๐บ
Stationary distribution ร ร ร P Q โ , ๐ฆ๐ ๐ โผ ๐ธ 1 3 โ Critical region: the typical scales are ๐ฆ๐ โผ ๐ธ 1 / 6 โ โ 1 / 6 , ๐ฆ๐ ๐ โผ ๐ธ 2 3 2 2 ๐ The Wigner distribution ๐ ๐ ๐ , ๐ โ exp โ ๐ โ ๐ ๐๐ ๐ ๏ฟฝ ๐ + 1 ๐ธ exp[ โ ๐ ๐ โ ] ๐ธ
Scaling of the interstate switching rates I Switching between period-two states in the range of developed bistability ร ๏ฟฝ ๐ต โ ๏ฟฝ ๐ ๐ก๐ก = ฮฉ ๐ก๐ก exp โ ๐ โ , ๏ฟฝ + 1 ๏ฟฝ ๐ต = ฮ๐ /( ๐ ๐ 2) simple power-law scaling only for ๐ ๐ = 0 (exact resonance, ๐ ๐บ = 2 ๐ 0 ) 3 / 2 2 โ 1 ๏ฟฝ ๐ต โ ๐ ๐ ๐
Scaling of the interstate switching rates II ร Switching between period-two states ๐บ ๐ฉ๐ ๐บ ๐ฉ๐ in the range of developed bistability ๏ฟฝ ๐ต โ ๏ฟฝ ๐ ๐ก๐ก = ฮฉ ๐ก๐ก exp โ ๐ โ , ๏ฟฝ + 1 ๏ฟฝ ๐ต = ฮ๐ /( ๐ ๐ 2) 3 / 2 independent of ๐ ๐ , 2 โ 1 ๏ฟฝ ๐ต1 โ ๐ ๐ ๐ i.e. of the driving frequency detuning
โFirst-orderโ phase transition ร ร ร 1 / 2 ๐บ๐ = 2 ๐ 2 โ 1 ๐ ๐ ๐
Critical slowing down Critical region: the typical scales are ฮQ โผ ๐ธ 1 / 6 โ โ 1 / 6 , โ , ฮ๐ ๐ โผ ๐ธ 1 3 โ , ฮ๐ โผ ๐ธ โ2 3 โ โ โ โ2 / 3 , ฮ f p โผ ๐ธ 2 3 Reciprocal correlation time as function of the frequency detuning. From top down the scaled field โ = โ 4, โ 2, 0, 2, 4, 6 . 2 โ 1)/ ๐ธ 2 3 is: ( ๐ ๐
Schematics of the experimental system P out ๐ ๐ฎ /2 Pump ๐ ๐ฎ ฮฆ P p M Temperature: T ~ 10 mK ๐ 0 /2 ๐ = 10.402GHz, Q=340
Vibrational states as a function of driving frequency P p = -62.4 dBm ฯ F /2 ฯ /2 = 10.386 GHz ฯ F /2 ฯ /2 = 10.384 GHz ๐ ๐บ / 4๐ (GHz) ฯ F /2 ฯ /2=10.404GHz ฯ F /2 ฯ /2=10.430GHz ฯ F 2 ฯ /2=10.389GHz ฯ F /2 ฯ /2=10.390GHz
โFirst order phase transitionโ ฯ F /2 ฯ /2 ~ 10.390 GHz ฯ F /2 ฯ /2 = 10.393 GHz 10.392 GHz 10.391 GHz 10.390 GHz 10.389 GHz 10.388 GHz 10.387 GHz 10.386 GHz 10.385 GHz Squeezing? 10.384 GHz ๐ ๐บ /4 ๐
Nonlinear friction I ๐๐ = โ 2 ฮ ๐๐ ๐ 2 ๐๐ / ๐๐ข Phenomenological nonlinear friction: ๐ A microscopic mechanism for passive quantum vibrational systems: MD & Krivoglaz, 1975 nanomechanics: Atalaya & MD, 2015 important for quantum optomechanics (MD, 1978)
Nonlinear friction II ๐๐ = โ 2 ฮ ๐๐ ๐ 2 ๐๐ / ๐๐ข Phenomenological nonlinear friction: ๐ ๐๐ ๐ข , ๐ 1 ๏ฟฝ ๐๐ ๐ , ๐ 2 + ๐ 2 + + ๐ ๐ ๐ ฬ = โ ๏ฟฝ [ ๐ , ๐ ๐ ] โ ๐ + ๐ ๐ ๐ โ 2 ฮ โ Quantum Langevin equations ๏ฟฝ ๐๐ ๐ , ๐ 2 + ๐ 2 + + ๐ ๐ ๐๐ ๐ข ๐ 1 ๐ฬ = โ ๏ฟฝ [ ๐ , ๐ ๐ ] โ ๐ + ๐ ๐ ๐ โ 2 ฮ โ 1 / 2 2 + 1 ๏ฟฝ ๐๐ , ๐ critical point: ๐ ๐0 = ฮ ๐0 = ๐ ๐0 1 2 ๐ต 2 ๐ 2 + 1 4 ๐ต 4 ๐ 4 + 1 ๐ 6 -type theory for the slow variable ๐ ๐ear the ๐ r๐t๐๐ al p๐ ๐๐t , ๐ ๐ = 6 ๐ต 6 ๐ 6 2 ๐๐ ๐ 2 ๐๐ ๐ , ๐ต 6 = ๐ ๏ฟฝ ๐๐ = ๐ท 2 ฮ ๐๐ 4 ฮ 6 โ โ ; ๐๐ ฮ , ๐ต 2 = 2 โ ๐ ๐0 ๐๐ ๐ , ๐ต 4 = โ๐ 2 ๐ = ๐ ๐ โ ๐ ๐0 โ ๐ ๐0 ๐๐ ๐ / ๐ ๐0 ๐0 ๐0 2๐ ๐0
Conclusions ๏ Near the critical point, parametric oscillators display critical slowing down and anomalously strong quantum fluctuations. The time scale, the fluctuation strength, and the width of the critical region are determined by fractional powers of โ . ๏ Quantum dynamics near the critical point is described by a slow variable driven by quantum noise, with a potential of the ๐ ๐ -type, for linear and nonlinear friction. ๏ Along with the time-symmetry breaking transition, the system displays a smeared first- order transition where three stable states are equally populated
Recommend
More recommend