Direct Deflection of Particle Dark Matter Asher Berlin Searching for new physics - Leaving no stone unturned! University of Utah August 8, 2019 ongoing with R. D’Agnolo, S. Ellis, P. Schuster, N. Toro
Direct Detection Below an MeV predictive cosmology (freeze-in) viable detectable (self-interactions, stellar cooling, 5 th forces) (light mediator) m force ⌧ meter � 1 millicharge-like on meter length scales χ eq e ff kinetically-mixed dark photon γ 1 m A 0 . 10 � 9 eV ⇠ 100 m χ
Freeze-In Y DM ( χχ → ee ) ( freeze-out freeze-in ) ( ee → χχ ) ◆ 1 / T T ⇠ m e ⇥ ✓ m e T eq ◆ 1 / 2 ◆ 1 / 2 ✓ MeV 1 q e ff ⇠ 10 − 11 = ) q ⇠ m χ m pl m χ ↵ em arXiv:0911.1120
MilliCharged Dark Matter 10 - 7 10 - 7 XENON10 10 - 8 SN1987A 10 - 9 CMB � � stellar cooling Coulomb H 1971 L 10 - 10 freeze - in q eff = e e ¢ ê e 10 - 11 10 - 12 ) A 0 10 - 13 10 - 14 (direct detection) e q e q 10 - 15 10 - 16 10 - 17 10 - 18 10 - 3 10 - 2 10 - 1 1 10 10 2 10 3 10 4 10 5 10 5 m c @ keV D
Direct Detection via Scattering new scattering targets • new read-out technologies • similar philosophy • instead, take advantage of: small mass → large number density, small momentum → easier to manipulate arXiv:1707.04591
New Observables
6 Electromagnetic Fields ⇠ 10 0 ⇢ , j 0 � E 0 , B 0 E, B 0 ⇠ ✏ E, ✏ B 0 r ⇠ m � 1 A 0 � cm , j �
Active Direct Detection q e ff ⇠ ✏ e 0 /e ⇠ 10 � 11 ⇣ m χ ⌘ � 1 / 2 MeV (freeze-in) ! ) ! ! ( v χ ⌧ 1 = ) electric fields are more e ffi cient than magnetic fields) ⇣ m χ r g ⇠ m χ v χ ⌘ 3 / 2 ✓ 10 T ◆ q e ff e B ⇠ meter ⇥ • bend it: keV B ⇣ m χ ◆ ⌘ 3 / 2 m χ v 2 • stop it: χ ⇠ q e ff e ∆ V = ) ∆ V ⇠ MV ⇥ keV
Inducing Dark Matter Waves
Debye Screening ' shielded deflector χ ± E def ρ χ ' 0 ρ χ ' 0 ' � ( eq e ff ) 2 ρ DM V def ρ Debye m 2 χ v 2 χ χ
Non-Adiabatic Debye Screening ' shielded deflector χ ± j χ ' ρ χ v χ wind E def ( R/L ) 3 ρ χ ' ρ Debye R χ L A 0 � ) E def ! E def e i ω t = ) ⇢ χ ! ⇢ χ e i ω t , j χ ! j χ e i ω t
Non-Adiabatic Debye Screening Debye L Debye L Charge Density H r c ê r c Current Density H j c ê j c 5 5 0.0001 0.0001 4 4 - 0.0001 0.0003 3 0 0.0007 0 - 0.0003 0 . 0 0.002 3 3 - 0.0007 0.0007 0.006 - 0.002 0.002 2 2 - 0.006 0.015 - 0.015 0.006 - 0.04 1 1 0.015 0.04 deflector deflector 0.04 y ê R y ê R 0.1 wind 0.3 0.1 wind 0.3 ô ô 0 0 - 1 - 1 - 2 - 2 - 3 - 3 - 4 - 4 - 5 - 5 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 x ê R x ê R ! p ⌧ ! ⌧ ⇡ v χ /R (maximum deflection) (ignore backreaction) ) ' ⇥ ) kHz ⇥ ( m χ / eV) � 1 / 4 ⌧ ! ⌧ MHz ⇥ ( R/ meter) � 1 = ✓ ◆ 100 kHz ⇣ ⌘ electric fields magnetic fields (quasi-static)
Direct Deflection shielded deflector shielded detector χ ± j χ B χ e i ω t E χ e i ω t ρ χ E def e i ω t j χ v χ 2 π v χ / ω high- Q ⇠ resonant detector ( E χ ⇠ ⇢ χ R e i ω t quasi-static ( ! ⌧ 1 /R ) = ) B χ ⇠ v χ ⇢ χ R e i ω t ⇠ ( E χ ⇠ 10 � 12 kV / cm ⇥ ( q e ff / 10 � 10 ) 2 ( m χ / keV) � 2 ( E def ⇠ 10 kV / cm , R ⇠ meter = ) B χ ⇠ 10 � 19 T ⇥ ( q e ff / 10 � 10 ) 2 ( m χ / keV) � 2
Detecting Dark Matter Waves
LC Resonators capacitively coupled ➤ L V DM ➤ C Φ SQ B χ e i ω t E χ e i ω t Φ DM shielded detector L PU L In ⇣ ⌘ R SQUID inductively coupled ◆ ⇣ ⌘ , ! LC ' ! ( ⌧ 1 /R ) E sig , B sig ⇠ QE χ , QB χ = DM Radio, Auriga…
LC Resonators Auriga DM Radio (gravity waves) (e ff ective currents via ultralight DM) no need to scan or operate down at kHz frequencies ⟹ Q > 10 6
Directional Dependence Debye L Charge Density H r c ê r c 5 1 0 0 0 4 . - 0.0001 0 0.0003 - 0.0003 3 - 0.0007 0.0007 - 0.002 0.002 2 - 0.006 - 0.015 0.006 - 0.04 1 0.015 0.04 deflector y ê R wind 0.3 0.1 ô 0 - 1 - 2 - 3 - 4 - 5 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 x ê R
Daily Modulation deflector-detector crystal axis axis Earth axis of v 0 = 1.5 ¥ 220 km ê s t=1/2 day rotation v 0 = 220 km ê s v 0 = 0.5 ¥ 220 km ê s 1 deflector-detector (sensitive to v wind and v 0 ) crystal axis r c H t L ê r c H 0 L axis t=0 휃 e 휃 lab 휃 lab 0.5 Cygnus v e 휃 e ~ 42° DEC ~ 48° 0 Celestial equator 0 0.5 1 DM wind t @ day D deflector: ω signal: ω ± ω ⨁ arXiv:1807.10291
Reach Summary 10 - 7 10 - 7 XENON10 10 - 8 SN1987A 10 - 9 CMB stellar cooling Coulomb H 1971 L 10 - 10 freeze - in B - field H DM Radio L q eff = e e ¢ ê e 10 - 11 , h E def i = 10 kV / cm 10 - 12 SENSEI H 100 g L ω = 100 kHz 10 - 13 , t int = year SuperCDMS - G2 H 1 kg L 10 - 14 E - field H I L E - field H II L E - field H III L 10 - 15 - 7 ê 12 T LC 1 ê 4 Q - 1 ê 4 q eff H reach L µ V sh I: V sh = 5 m , T LC = 4 K, Q = 10 4 3 10 - 16 ultralight cosmology? II: V sh = 10 m , T LC = 4 K, Q = 10 6 3 10 - 17 III: V sh = 10 m , T LC = 100 mK, Q = 10 7 3 10 - 18 10 - 3 10 - 2 10 - 1 1 10 10 2 10 3 10 4 10 5 10 5 m c @ keV D transition when ⇠ ⇠ m χ v χ . meter − 1 = ) m χ . 10 − 7 keV r · � � 7 2 ( Q ! t int /T LC ) � 1 h E def i � 1 q e ff (reach) / m χ V 12 4 sh
Active Direct Detection • induced daily modulation • electromagnetic focusing / trapping of dark matter • optimal geometry for wind • deflection-detection for spin-coupled forces, …
Recommend
More recommend