doomsday dark matter doomsday dark matter or some stones
play

Doomsday Dark Matter Doomsday Dark Matter or Some stones are - PowerPoint PPT Presentation

Doomsday Dark Matter Doomsday Dark Matter or Some stones are better left unturned Doomsday Dark Matter Doomsday Dark Matter Weak scale susy? Doomsday Dark Matter Weak scale susy? High scale susy? Doomsday Dark Matter Weak scale susy?


  1. Doomsday Dark Matter

  2. Doomsday Dark Matter or Some stones are better left unturned

  3. Doomsday Dark Matter

  4. Doomsday Dark Matter Weak scale susy?

  5. Doomsday Dark Matter Weak scale susy? High scale susy?

  6. Doomsday Dark Matter Weak scale susy? High scale susy? Gravitino Dark Matter in High Scale susy

  7. Constrained Models (CMSSM) MSSM with R-Parity (still more than 100 parameters)

  8. Constrained Models (CMSSM) MSSM with R-Parity (still more than 100 parameters) Gaugino mass Unification h u H 2 Qu c + h d H 1 Qd c + h e H 1 Le c + µH 2 H 1 W = − 1 2 M α λ α λ α − m 2 ij φ i ∗ φ j L soft = − A u h u H 2 Qu c − A d h d H 1 Qd c − A e h e H 1 Le c − BµH 2 H 1 + h.c.

  9. Constrained Models (CMSSM) MSSM with R-Parity (still more than 100 parameters) Gaugino mass Unification A-term Unification h u H 2 Qu c + h d H 1 Qd c + h e H 1 Le c + µH 2 H 1 W = − 1 2 M α λ α λ α − m 2 ij φ i ∗ φ j L soft = − A u h u H 2 Qu c − A d h d H 1 Qd c − A e h e H 1 Le c − BµH 2 H 1 + h.c.

  10. Constrained Models (CMSSM) MSSM with R-Parity (still more than 100 parameters) Gaugino mass Unification A-term Unification Scalar mass unification h u H 2 Qu c + h d H 1 Qd c + h e H 1 Le c + µH 2 H 1 W = − 1 2 M α λ α λ α − m 2 ij φ i ∗ φ j L soft = − A u h u H 2 Qu c − A d h d H 1 Qd c − A e h e H 1 Le c − BµH 2 H 1 + h.c.

  11. CMSSM Spectra Unification to rich spectrum + EWSB Falk

  12. What happened to weak scale SUSY Mastercode 2009 2500 25 ] 2 2 χ [GeV/c ∆ 2000 20 1/2 m 1500 15 1000 10 500 5 0 0 0 500 1000 1500 2000 2500 2 m [GeV/c ] 0 Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, CMSSM Isidori, Olive, Ronga, Weiglein

  13. Elastic scaterring cross-section Mastercode 2009 -40 1 10 ] 1-CL 2 [cm 0.9 -41 10 0.8 SI p -42 σ 10 0.7 -43 10 0.6 -44 0.5 10 0.4 -45 10 0.3 -46 10 0.2 -47 10 0.1 -48 0 10 3 2 10 10 2 m [GeV/c ] 0 ~ χ 1 Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, CMSSM Isidori, Olive, Ronga, Weiglein

  14. LHC Happened Mastercode 2015 Low mass spectrum still observable at LHC 14 TeV 3000 fb -1 8 TeV 20 fb -1 Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, CMSSM Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, Olive, Sakurai, de Vries, Weiglein

  15. Elastic scaterring cross-section Mastercode 2015 New LUX bound + PandaX + XENON1t Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, CMSSM Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, Olive, Sakurai, de Vries, Weiglein

  16. Weak (?) scale supersymmetric dark matter

  17. Weak (?) scale supersymmetric dark matter Viable regions of parameter space with dark matter is found along strips:

  18. Weak (?) scale supersymmetric dark matter Viable regions of parameter space with dark matter is found along strips: Stau-coannhilation Strip extends only out to ~1 TeV Stop-coannihilation Strip Higgs Funnel Focus Point

  19. Stop strip A 0 /m 0 = -4.2, tan β = 5, μ > 0 20 122 128 129 123 133 127 121 1 2 3 131 125 6 6 121 0 . 0 15 m 0 (TeV) 1 128 2 2 2 1 9 131 x X 133 127 121 123 1 125 3 1 1 10 3 3 131 127 128 122 1 2 9 127 123 121 125 5 131 133 0.066 129 128 131 131 1 3 3 127 5 2 133 1 0 0.5 5 10 15 m 1/2 (TeV) Ellis, Evans, Luo, Nagata, Olive, Sandick Ellis, Evans, Luo, Olive, Zheng Bagnaschi et al.

  20. Stop strip 1 1.5 2 2.5 3 3.5 135 A 0 = − 4 . 2 m 0 , tan β = 5 , µ > 0 60 130 50 125 δ m (GeV) m h (GeV) 40 120 30 115 20 m ˜ t − m χ 110 FH2100 10 105 FH2141 0 8100 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 m 1 / 2 (TeV) Ellis, Evans, Luo, Olive, Zheng Bagnaschi et al.

  21. Focus Point A=0, tan β = 10, μ < 0 15 m 0 (TeV) 10 1 3 1 1 2 9 127 5 125 1 2 1 3 2 1 0 0.5 5 10 m 1/2 (TeV) Ellis, Evans, Luo, Nagata, Olive, Sandick Ellis, Evans, Mustafayev, Nagata, Olive Bagnaschi et al.

  22. Other Possibilities Less Constrained (more parameters) NUHM1,2: m 12 = m 22 ≠ m 02 , m 12 ≠ m 22 ≠ m 02 μ and/or m A free NUGM gluino coannihilation subGUT models: M in < M GUT new parameter M in SuperGUT models: M in > M GUT requires SU(5) input couplings

  23. SubGUT Stop strip A 0 /m 0 = 2.75, tan β = 20, μ < 0 1.5 × 10 4 127 M in = 10 9 GeV 125 123 133 129 m 0 (GeV) 121 1.0 × 10 4 127 125 125 131 123 129 3 2 1 127 1 2 1 129 129 125 121 1 2 9 131 3 2 131 1 3 2 1 127 121 129 129 125 127 127 125 0.0 × 10 0 123 123 5.0 × 10 2 1.0 × 10 4 m 1/2 (GeV) Ellis, Evans, Luo, Nagata, Olive, Sandick Ellis, Evans, Luo, Olive, Zheng Bagnaschi et al.

  24. DM density/Higgs mass saturate for m SUSY ~ O(10) TeV Other Possibilities (with PeV scales) More Constrained (fewer parameters) Pure Gravity Mediation 2 parameter model with very large scalar masses m 0 = m 3/2 , tan β mAMSB similar to PGM, but allows m 0 ≠ m 3/2

  25. mAMSB tan β = 3.5, μ > 0 1.2 × 10 3 129 1.0 × 10 3 127 m 3/2 (TeV) 125 Higgsino 123 Wino DM DM 121 3.0 × 10 1 0 10 20 30 40 50 m 0 (TeV) Mastercode 2016 Scalar masses: m 0 ≠ m 3/2 Bagnaschi et al.

  26. Mastercode 2017 mAMSB Bagnaschi, Borsato, Buchmueller, Cavanaugh, Chobanova, Citron, Costa, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Lucio, Luo, Martinez Santos, Olive, Riochards,Sakurai, Weiglein

  27. mAMSB Bagnaschi, Borsato, Buchmueller, Cavanaugh, Chobanova, Citron, Costa, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Mastercode 2017 Isidori, Lucio, Luo, Martinez Santos, Olive, Riochards,Sakurai, Weiglein

  28. Even Larger Mass Scales What if the entire SUSY matter spectrum were very large with only the gravitino remaining “light” Benakli, Chen, Dudas, Mambrini Dudas, Mambrini, Olive Supersplit Supersymmetry 1 parameter model: m 3/2

  29. Gravitino Mass Limits For m 3/2 ~ 10-1000 GeV Gravitino decays to the LSP/NLSP decays to the gravitino: Lifetimes 100-10 8 s ⇒ BBN limits m 5 Γ decay ' C 2 χ NLSP → gravitino + γ m 2 3 / 2 M 2 16 π P τ χ ≾ 100 s ⇒ m χ > 300 GeV (m 3/2 /GeV) 2/5

  30. Gravitino Mass Limits Kawasaki, Kohri, Moroi Cyburt, Ellis, Fields, Luo, Olive, Spanos 0.230 0.240 3 x 10 -4 10 -4 3.0 0.3 3.2 x 10 -5 1.0 3.0 x 10 -9 1.0 x 10 -9 2.75 x 10 -10 0.1 0.05 τ χ ≾ 100 s ⇒ m χ > 300 GeV (m 3/2 /GeV) 2/5

  31. Gravitino Mass Limits τ χ ≾ 100 s ⇒ m χ > 300 GeV (m 3/2 /GeV) 2/5 Ω 3 / 2 h 2 = m 3 / 2 Ω χ h 2 . 0 . 12 m χ Ω χ h 2 Relic Density: or m χ m 3 / 2 Gluino coannihilation � � m g � � 10 m q 200 m χ < 8 TeV ⇒ m 3/2 < 4 TeV 150 � � m Χ � GeV � heavier gravitino → heavier neutralino 100 → Ω χ h 2 too large → Ω 3/2 h 2 too large m g 50 0 2000 4000 6000 8000 10000 m Χ � GeV � Ellis, Luo, Olive

  32. Gravitino Mass Limits m 3/2 < 4 TeV unless(!) the susy spectrum lies above the inflationary scale. For M susy ~ F 1/2 > m infl ~ 3 × 10 13 GeV m 2 F φ p p m 3 / 2 = 2 > ' 0 . 2 EeV 3 M P 3 M P

  33. Gravitino Production Standard Picture: gluon + gluon → gluino + gravitino ! m 2 1 g ˜ h σ v i ⇠ 1 + M 2 3 m 2 P 3 / 2 m 2 m 2 n 3 / 2 ∼ Γ g ˜ Γ ∼ T 3 g ˜ H ∼ T M 2 P m 2 M P m 2 n γ 3 / 2 3 / 2 m ˜ g > m 3 / 2

  34. Gravitino Production Standard Picture: gluon + gluon → gluino + gravitino ! m 2 1 g ˜ h σ v i ⇠ 1 + M 2 3 m 2 P 3 / 2 m 2 m 2 n 3 / 2 ∼ Γ g ˜ Γ ∼ T 3 g ˜ H ∼ T M 2 P m 2 M P m 2 n γ 3 / 2 3 / 2 m ˜ g > m 3 / 2 m ˜ g > m φ Not possible if

  35. Gravitino Production m 2 F m ˜ g > m φ φ p m 3 / 2 = p 2 > ' 0 . 2 EeV 3 M P 3 M P gluon + gluon → gravitino + gravitino T 6 h σ v i ⇠ M 4 P m 4 3 / 2 T 9 T 7 n 3 / 2 ∼ Γ Γ ∼ H ∼ M 4 P m 4 M 3 P m 4 n γ 3 / 2 3 / 2 ◆ 3 ✓ ◆ 7 ✓ 0 . 1 EeV T RH Ω 3 / 2 h 2 ' 0 . 11 2 . 0 ⇥ 10 10 GeV m 3 / 2

Recommend


More recommend