earth scattering of dark matter
play

Earth-Scattering of Dark Matter: when Dark Matter particle physics - PowerPoint PPT Presentation

Earth-Scattering of Dark Matter: when Dark Matter particle physics and astrophysics collide Bradley J. Kavanagh LPTHE - Paris VI Based on arXiv:1611.05453 with Riccardo Catena and Chris Kouvaris MIAPP, Munich - 21st March 2017


  1. Earth-Scattering of Dark Matter: when Dark Matter particle physics and astrophysics collide Bradley J. Kavanagh LPTHE - Paris VI Based on arXiv:1611.05453 with Riccardo Catena and Chris Kouvaris MIAPP, Munich - 21st March 2017 bkavanagh@lpthe.jussieu.fr @BradleyKavanagh NewDark

  2. Dark Matter is heavier in Munich Local DM density: ρ χ ∼ 0 . 3 GeV / cm 3

  3. Dark Matter is heavier in Munich Local DM density: ρ χ ∼ 0 . 3 GeV / cm 3 In the UK, for m χ ∼ 150 GeV you get about 1 DM particle per glass…

  4. Dark Matter is heavier in Munich Local DM density: ρ χ ∼ 0 . 3 GeV / cm 3 In the UK, for m χ ∼ 150 GeV you get about 1 DM particle per glass… In Munich, you need m χ ∼ 300 GeV to get 1 DM particle per glass…

  5. Earth-Scattering of Dark Matter: when Dark Matter particle physics and astrophysics collide Bradley J. Kavanagh LPTHE - Paris VI Based on arXiv:1611.05453 with Riccardo Catena and Chris Kouvaris MIAPP, Munich - 21st March 2017 bkavanagh@lpthe.jussieu.fr @BradleyKavanagh NewDark

  6. Particle physics Astrophysics

  7. Nuclear Physics Particle physics Astrophysics

  8. Particle physics Astrophysics

  9. ‘Standard’ SI/SD WIMPs with SHM distribution

  10. Astrophysics Reconstructing DM parameters without astro assumptions 1303.6868, 1312.1852, 1410.8051, 1609.08630 and others

  11. Discriminating DM operators 1505.07406 Particle physics DM-SM operator running and mixing 1605.04917, 1702.00016 Astrophysics Reconstructing DM parameters without astro assumptions 1303.6868, 1312.1852, 1410.8051, 1609.08630 and others

  12. Discriminating DM operators 1505.07406 Particle physics Earth-Scattering of DM? DM-SM operator running and mixing 1605.04917, 1702.00016 Astrophysics Reconstructing DM parameters without astro assumptions 1303.6868, 1312.1852, 1410.8051, 1609.08630 and others

  13. Direct Detection of DM (in space?) Detector χ Unscattered (free) DM: f 0 ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  14. Direct Detection of DM on Earth Detector χ Unscattered (free) DM: f 0 ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  15. Earth-Scattering - Attenuation Detector Previous calculations usually only consider DM attenuation Zaharijas & Farrar [astro-ph/0406531] Kouvaris & Shoemaker [1405.1729,1509.08720] DAMA [1505.05336] χ f ( v ) → f 0 ( v ) − f A ( v ) Attenuation of DM flux: Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  16. Earth-Scattering - Deflection Detector χ Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  17. Earth-Scattering - Deflection Detector Assuming DM mean free path Considered in early λ � R E Monte Carlo simulations… Collar & Avignone [PLB 275, 1992 and others] As well as more recent ones… Emken, Kouvaris & Shoemaker [1702.07750] χ (see later) Can treat (without MC) in the ‘single scatter’ approximation… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  18. Earth-Scattering Assuming DM Detector mean free path λ � R E Consider both attenuation and deflection in an analytic framework (‘Single scatter’) Consider non-standard DM-nucleon interactions (e.g. NREFT) χ ˜ f ( v ) = f 0 ( v ) − f A ( v ) + f D ( v ) Total DM velocity distribution: altered flux, daily modulation, directionality… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  19. The current landscape 10 − 34 10 − 35 10 − 36 10 − 37 10 − 38 CRESST-II SI [cm 2 ] 10 − 39 10 − 40 ρ 0 . 3 σ p 10 − 41 10 − 42 10 − 43 10 − 44 10 − 45 LUX 10 − 46 0 . 1 1 10 100 300 m χ [GeV] CRESST-II [1509.01515] LUX [1608.07648] + many others… How big is the probability of scattering in the Earth? Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  20. The current landscape 10 − 34 10 − 35 10 − 36 10 − 37 = p 5 0 % 10 − 38 CRESST-II p = 10% SI [cm 2 ] 10 − 39 p = 1% 10 − 40 ρ 0 . 3 σ p 10 − 41 10 − 42 10 − 43 10 − 44 10 − 45 LUX 10 − 46 0 . 1 1 10 100 300 m χ [GeV] CRESST-II [1509.01515] LUX [1608.07648] + many others… What effect can DM scattering in the Earth have? Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  21. The current landscape 10 − 34 10 − 35 Focus on this 10 − 36 region 10 − 37 = p 5 0 % 10 − 38 CRESST-II p = 10% SI [cm 2 ] 10 − 39 p = 1% 10 − 40 ρ 0 . 3 σ p 10 − 41 10 − 42 10 − 43 10 − 44 10 − 45 LUX 10 − 46 0 . 1 1 10 100 300 m χ [GeV] CRESST-II [1509.01515] LUX [1608.07648] + many others… What effect can DM scattering in the Earth have? Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  22. Earth-Scattering Calculation Detector Assuming DM mean free path λ � R E χ ˜ f ( v ) = f 0 ( v ) − f A ( v ) + f D ( v ) Total DM velocity distribution: Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  23. Astrophysics of DM (the simple picture) Standard Halo Model (SHM) is typically assumed: isotropic, ρ ( r ) ∝ r − 2 spherically symmetric distribution of particles with . Leads to a Maxwell-Boltzmann (MB) distribution ( in the lab frame ): − ( v − v e ) 2 � � v ) − 3 / 2 exp f Lab ( v ) = (2 πσ 2 Θ ( | v − v e | − v esc ) 2 σ 2 v [See Nassim Bozorgnia’s talk 06/03] � f ( v ) = v 2 f ( v ) d Ω v This is our ‘free’ distribution: f 0 ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  24. Attenuation λ ( v ) − 1 = n σ ( v ) v = ( v, cos θ , φ ) B Detector A � − d (cos θ ) � f 0 ( v ) − f A ( v ) = f 0 ( v ) exp λ ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  25. Attenuation λ ( v ) − 1 = ¯ ¯ v = ( v, cos θ , φ ) n σ ( v ) B Detector d e ff = 1 � n ( r )d l ¯ n AB A � � − d e ff (cos θ ) f 0 ( v ) − f A ( v ) = f 0 ( v ) exp ¯ λ ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  26. Attenuation λ i ( v ) − 1 = ¯ ¯ v = ( v, cos θ , φ ) n i σ ( v ) B Detector d e ff ,i = 1 � n i ( r )d l ¯ n i AB A � species � d e ff ,i (cos θ ) � f 0 ( v ) − f A ( v ) = f 0 ( v ) exp − ¯ λ i ( v ) i Sum over 8 most abundant elements in the Earth: O, Si, Mg, Fe, Ca, Na, S, Al Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  27. Effective Earth-crossing distance Most scattering comes from Oxygen (in the mantle) and Iron (in the core) × 10 23 × 10 32 2 . 0 1 . 2 Oxygen Oxygen Iron Iron 1 . 0 1 . 5 0 . 8 n d e ff ( θ ) [ cm − 2 ] n ( r ) [ cm − 3 ] 1 . 0 0 . 6 0 . 4 ¯ 0 . 5 0 . 2 0 . 0 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 π / 4 π / 2 r/R E θ NB: little Earth-scattering for spin-dependent interactions Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  28. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector C A Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  29. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector C A species ( κ i ) 4 v � d e ff ,i (cos θ ) � � d 2 ˆ v � ) P i (cos α ) f D ( v ) = 2 π f 0 ( κ i v, ˆ λ i ( κ i v ) i κ i = v � /v [Detailed calculation in the paper] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  30. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector C A Depends on differential cross section species ( κ i ) 4 v � d e ff ,i (cos θ ) � � d 2 ˆ v � ) P i (cos α ) f D ( v ) = 2 π f 0 ( κ i v, ˆ λ i ( κ i v ) i κ i = v � /v Depends on total cross section Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

  31. NREFT operator basis Write down all possible non-relativistic (NR) WIMP- nucleon operators which can mediate the elastic scattering. [Fan et al - 1008.1591, Fitzpatrick et al. - 1203.3542] O 1 = 1 SI O 4 = ~ S χ · ~ S N SD [1008.1591, 1203.3542, 1308.6288, 1505.03117] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MIAPP, Munich - 21st Mar. 2017

Recommend


More recommend