earth scattering of dark matter
play

Earth-Scattering of Dark Matter: from sub-GeV Dark Matter to - PowerPoint PPT Presentation

Earth-Scattering of Dark Matter: from sub-GeV Dark Matter to WIMPzillas Bradley J. Kavanagh LPTHE - Paris VI Based (partly) on arXiv:1611.05453 with Riccardo Catena and Chris Kouvaris AmsterDark@GRAPPA - 24th May 2017


  1. Earth-Scattering of Dark Matter: from sub-GeV Dark Matter to WIMPzillas Bradley J. Kavanagh LPTHE - Paris VI Based (partly) on arXiv:1611.05453 with Riccardo Catena and Chris Kouvaris AmsterDark@GRAPPA - 24th May 2017 bkavanagh@lpthe.jussieu.fr @BradleyKavanagh NewDark

  2. Direct Detection Landscape 10 − 36 LUX (IDM-2016) 10 − 37 CDMSlite (2015) 10 − 38 CRESST-II (2015) Xenon1T (2017) 10 − 39 Xe Neutrino Floor (O’Hare 2016) 10 − 40 10 − 41 p [cm 2 ] 10 − 42 σ SI 10 − 43 10 − 44 8 B 10 − 45 10 − 46 10 − 47 10 − 48 10 − 1 10 0 10 1 10 2 10 3 10 4 m χ [GeV] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  3. Direct Detection Landscape Sub-GeV DM 10 − 36 LUX (IDM-2016) 10 − 37 CDMSlite (2015) 10 − 38 CRESST-II (2015) Xenon1T (2017) 10 − 39 Xe Neutrino Floor (O’Hare 2016) 10 − 40 10 − 41 p [cm 2 ] 10 − 42 σ SI 10 − 43 10 − 44 8 B 10 − 45 10 − 46 10 − 47 10 − 48 10 − 1 10 0 10 1 10 2 10 3 10 4 m χ [GeV] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  4. Direct Detection Landscape Sub-GeV DM 10 − 36 LUX (IDM-2016) 10 − 37 CDMSlite (2015) 10 − 38 CRESST-II (2015) Xenon1T (2017) 10 − 39 Xe Neutrino Floor (O’Hare 2016) 10 − 40 WIMPzillas 10 − 41 p [cm 2 ] 10 − 42 σ SI 10 − 43 10 − 44 8 B 10 − 45 10 − 46 10 − 47 10 − 48 10 − 1 10 0 10 1 10 2 10 3 10 4 m χ [GeV] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  5. DD Landscape - Sub-GeV DM 10 − 34 10 − 35 10 − 36 10 − 37 = p 5 0 % 10 − 38 CRESST-II p = 10% SI [cm 2 ] 10 − 39 p = 1% 10 − 40 ρ 0 . 3 σ p 10 − 41 10 − 42 10 − 43 10 − 44 10 − 45 LUX 10 − 46 0 . 1 1 10 100 300 m χ [GeV] CRESST-II [1509.01515] LUX [1608.07648] + many others… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  6. DD Landscape - Sub-GeV DM 10 − 34 Focus on this 10 − 35 region 10 − 36 10 − 37 = p 5 0 % 10 − 38 CRESST-II p = 10% SI [cm 2 ] 10 − 39 p = 1% 10 − 40 ρ 0 . 3 σ p 10 − 41 10 − 42 10 − 43 10 − 44 10 − 45 LUX 10 − 46 0 . 1 1 10 100 300 m χ [GeV] CRESST-II [1509.01515] LUX [1608.07648] + many others… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  7. Direct Detection of DM (in space?) Detector χ Unscattered (free) DM: f 0 ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  8. Astrophysics of DM (the simple picture) Standard Halo Model (SHM) is typically assumed: isotropic, ρ ( r ) ∝ r − 2 spherically symmetric distribution of particles with . Leads to a Maxwell-Boltzmann (MB) distribution ( in the lab frame ): − ( v − v e ) 2 � � v ) − 3 / 2 exp f Lab ( v ) = (2 πσ 2 Θ ( | v − v e | − v esc ) 2 σ 2 v [But see e.g. 1705.05853] � f ( v ) = v 2 f ( v ) d Ω v This is our ‘free’ distribution: f 0 ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  9. Direct Detection of DM on Earth Detector χ But DM scattering in the Earth can distort the velocity distribution ˜ f ( v ) Perturbed/scattered DM: Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  10. Earth-Scattering - Attenuation Detector Previous calculations usually only consider DM attenuation Zaharijas & Farrar [astro-ph/0406531] Kouvaris & Shoemaker [1405.1729,1509.08720] DAMA [1505.05336] χ f ( v ) → f 0 ( v ) − f A ( v ) Attenuation of DM flux: Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  11. Earth-Scattering - Deflection Detector χ Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  12. Earth-Scattering - Deflection Detector Assuming DM mean free path Considered in early λ � R E Monte Carlo simulations… Collar & Avignone [PLB 275, 1992 and others] As well as more recent ones… Emken, Kouvaris & Shoemaker [1702.07750] χ (see later) Can be very important for light DM. Can treat (without MC) in the ‘single scatter’ approximation… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  13. Earth-Scattering Assuming DM Detector mean free path λ � R E Consider both attenuation and deflection in an analytic framework (‘Single scatter’) Consider non-standard DM-nucleon interactions (e.g. NREFT) χ ˜ f ( v ) = f 0 ( v ) − f A ( v ) + f D ( v ) Total DM velocity distribution: altered flux, daily modulation, directionality… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  14. Attenuation λ i ( v ) − 1 = ¯ ¯ v = ( v, cos θ , φ ) n i σ ( v ) B Detector d e ff ,i = 1 � n i ( r )d l ¯ n i AB A � species � d e ff ,i (cos θ ) � f 0 ( v ) − f A ( v ) = f 0 ( v ) exp − ¯ λ i ( v ) i Sum over 8 most abundant elements in the Earth: O, Si, Mg, Fe, Ca, Na, S, Al Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  15. Effective Earth-crossing distance Most scattering comes from Oxygen (in the mantle) and Iron (in the core) × 10 23 × 10 32 2 . 0 1 . 2 Oxygen Oxygen Iron Iron 1 . 0 1 . 5 0 . 8 n d e ff ( θ ) [ cm − 2 ] n ( r ) [ cm − 3 ] 1 . 0 0 . 6 0 . 4 ¯ 0 . 5 0 . 2 0 . 0 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 π / 4 π / 2 r/R E θ NB: little Earth-scattering for spin-dependent interactions Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  16. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector C A Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  17. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector C A species ( κ i ) 4 v � d e ff ,i (cos θ ) � � d 2 ˆ v � ) P i (cos α ) f D ( v ) = 2 π f 0 ( κ i v, ˆ λ i ( κ i v ) i κ i = v � /v [Detailed calculation in the paper] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  18. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector C A Depends on differential cross section species ( κ i ) 4 v � d e ff ,i (cos θ ) � � d 2 ˆ v � ) P i (cos α ) f D ( v ) = 2 π f 0 ( κ i v, ˆ λ i ( κ i v ) i κ i = v � /v Depends on total cross section Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  19. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector Focus on low mass DM: C m χ = 0 . 5 GeV Fix couplings to give 10% A probability of scattering in Depends on differential the Earth cross section species ( κ i ) 4 v � d e ff ,i (cos θ ) � � d 2 ˆ v � ) P i (cos α ) f D ( v ) = 2 π f 0 ( κ i v, ˆ λ i ( κ i v ) i κ i = v � /v Depends on total cross section Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  20. DM deflection distribution P (cos α ) = 1 d σ d E R Standard SI interaction d E R d cos α σ ���������� ���� �� - � χ = ��� ��� ���������� ���� �� - � χ = �� ��� � ��� � � � � � � � � � � � �� � � � �� � ��� � � � �� � � � �� ��� � ( ��� α ) � ( ��� α ) � � ��� ��� � � - � - ��� � ��� � - � - ��� � ��� � �� ���������� ������ ��� α �� ���������� ������ ��� α Backward Forward Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  21. DM deflection distribution P (cos α ) = 1 d σ d E R Standard SI interaction d E R d cos α σ ���������� ���� �� - � χ = ��� ��� � Standard SI interaction � � � � � � � �� ��� O 1 = 1 ⇒ d σ ∼ 1 � � � �� v 2 d E R � ( ��� α ) � v ⊥ ⇒ d � ∼ (1 − m N E R O 8 = � χ N v 2 ) S χ · � 2 µ 2 d E R ��� v ⊥ ) ⇒ d � ∼ E R O 12 = � S χ · ( � S N × � d E R v 2 � - � - ��� � ��� � �� ���������� ������ ��� α Backward Forward Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

  22. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector C Now we have everything we need! A Depends on differential cross section species ( κ i ) 4 v � d e ff ,i (cos θ ) � � d 2 ˆ v � ) P i (cos α ) f D ( v ) = 2 π f 0 ( κ i v, ˆ λ i ( κ i v ) i κ i = v � /v Depends on total cross section Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM AmsterDark@GRAPPA - 24th May 2017

Recommend


More recommend