signatures of earth scattering in the direct detection of
play

Signatures of Earth-Scattering in the Direct Detection of Dark - PowerPoint PPT Presentation

Signatures of Earth-Scattering in the Direct Detection of Dark Matter Bradley J. Kavanagh LPTHE - Paris VI Based on arXiv:1611.05453 with Riccardo Catena and Chris Kouvaris MPIK, Heidelberg - 9th January 2017 bkavanagh@lpthe.jussieu.fr


  1. Signatures of Earth-Scattering in the Direct Detection of Dark Matter Bradley J. Kavanagh LPTHE - Paris VI Based on arXiv:1611.05453 with Riccardo Catena and Chris Kouvaris MPIK, Heidelberg - 9th January 2017 bkavanagh@lpthe.jussieu.fr @BradleyKavanagh NewDark

  2. Dark Matter Planck [1502.01589] Hradecky et al. [astro-ph/0006397] Rubin, Ford & Thonnard (1980) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  3. Dark Matter at the Sun’s Radius Global Local Model total mass distribution in Estimate local DM density from Milky Way and extract DM kinematics of local stars density at Solar Radius (~8 kpc) (assuming local disk equilibrium) E.g. Iocco et al. [1502.03821] E.g. Garbari et al. [1206.0015] Values in the range: ρ χ ∼ 0 . 2–0 . 8 GeV cm − 3 But not zero! c.f. Garbari et al. [1204.3924] Read [1404.1938] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  4. Direct Detection of DM on Earth Detector χ Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  5. Direct Detection of DM on Earth Detector χ Unscattered (free) DM: f 0 ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  6. Earth-Scattering - Attenuation Detector Previous calculations usually only consider DM attenuation Zaharijas & Farrar [astro-ph/0406531] Kouvaris & Shoemaker [1405.1729,1509.08720] DAMA [1505.05336] χ f ( v ) → f 0 ( v ) − f A ( v ) Attenuation of DM flux: Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  7. Earth-Scattering - Deflection Detector χ Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  8. Earth-Scattering - Deflection Detector Assuming DM mean free path λ � R E Considered in early Monte Carlo simulations Collar & Avignone [PLB 275, 1992 and others] χ We’ll use the ‘single scatter’ approximation… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  9. Earth-Scattering Detector Assuming DM mean free path λ � R E χ ˜ f ( v ) = f 0 ( v ) − f A ( v ) + f D ( v ) Total DM velocity distribution: altered flux, daily modulation, directionality… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  10. Outline Direct Detection (a more detailed look) Calculating the Earth-Scattering effect Non-relativistic Effective Field Theory of DM Impact on the DM velocity distribution and modulation signatures Future work Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  11. Direct detection Detector Target nucleus m χ & 1 GeV v ∼ 10 − 3 χ Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  12. Direct detection Detector m χ & 1 GeV v ∼ 10 − 3 Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  13. Direct detection Detector Light (scintillation) m χ & 1 GeV v ∼ 10 − 3 Charge Heat (phonons) (ionisation) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  14. Direct detection Detector Light (scintillation) m χ & 1 GeV v ∼ 10 − 3 Charge Heat (phonons) (ionisation) Include all particles with enough � ∞ d R vf ( v ) d σ ρ χ d 3 v speed to excite recoil of energy : = E R d E R d E R m χ m A v min � m N E R v min = 2 µ 2 χ N Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  15. Direct detection Detector Light (scintillation) m χ & 1 GeV v ∼ 10 − 3 Charge Heat (phonons) (ionisation) Include all particles with enough � ∞ d R vf ( v ) d σ ρ χ d 3 v speed to excite recoil of energy : = E R d E R d E R m χ m A v min � m N E R v min = 2 µ 2 χ N Particle and Astrophysics nuclear physics Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  16. Direct detection Detector Light (scintillation) m χ & 1 GeV v ∼ 10 − 3 Charge Heat (phonons) (ionisation) Include all particles with enough � ∞ d R vf ( v ) d σ ρ χ d 3 v speed to excite recoil of energy : = E R d E R d E R m χ m A v min � m N E R v min = 2 µ 2 χ N Particle and Astrophysics nuclear physics But plenty of alternative ideas: DM-electron recoils [1108.5383] Superconducting detectors [1504.07237] Axion DM searches [1404.1455] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  17. Particle Physics of DM (the simple picture) Typically assume contact interactions (heavy mediators). In the non-relativistic limit, obtain two main contributions. σ p Write in terms of DM-proton cross section : d σ A σ p χ p v 2 C A F 2 ( E R ) Form factor accounts for ∝ d E R µ 2 loss of coherence at high energy Enhancement factor different for: C SI A ∼ A 2 spin-independent (SI) interactions - C SD ∼ ( J + 1) /J spin-dependent (SD) interactions - A Interactions which are higher order in v are possible - see later… Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  18. Astrophysics of DM (the simple picture) Standard Halo Model (SHM) is typically assumed: isotropic, ρ ( r ) ∝ r − 2 spherically symmetric distribution of particles with . Leads to a Maxwell-Boltzmann (MB) distribution (in the lab frame): − ( v − v e ) 2 � � v ) − 3 / 2 exp f Lab ( v ) = (2 πσ 2 Θ ( | v − v e | − v esc ) 2 σ 2 v which is well matched in some hydro simulations. [1601.04707, 1601.04725, 1601.05402] � v e - Earth’s Velocity f ( v ) = v 2 f ( v ) d Ω v v e ∼ 220 − 250 km s − 1 σ v ∼ 155 − 175 km s − 1 Feast et al. [astro-ph/9706293], Bovy et al. [1209.0759] − 41 km s − 1 v esc = 533 +54 Piffl et al. (RAVE) [1309.4293] Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  19. The final event rate SI interactions, SHM distribution Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  20. The current landscape 10 − 34 10 − 35 10 − 36 10 − 37 10 − 38 CRESST-II SI [cm 2 ] 10 − 39 10 − 40 ρ 0 . 3 σ p 10 − 41 10 − 42 10 − 43 10 − 44 10 − 45 LUX 10 − 46 0 . 1 1 10 100 300 m χ [GeV] CRESST-II [1509.01515] LUX [1608.07648] + many others… How big is the probability of scattering in the Earth? Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  21. The current landscape 10 − 34 10 − 35 10 − 36 10 − 37 = p 5 0 % 10 − 38 CRESST-II p = 10% SI [cm 2 ] 10 − 39 p = 1% 10 − 40 ρ 0 . 3 σ p 10 − 41 10 − 42 10 − 43 10 − 44 10 − 45 LUX 10 − 46 0 . 1 1 10 100 300 m χ [GeV] CRESST-II [1509.01515] LUX [1608.07648] + many others… What effect can DM scattering in the Earth have? Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  22. Earth-Scattering Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  23. Earth-Scattering Calculation Detector Assuming DM mean free path λ � R E χ ˜ f ( v ) = f 0 ( v ) − f A ( v ) + f D ( v ) Total DM velocity distribution: Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  24. Attenuation λ ( v ) − 1 = n σ ( v ) v = ( v, cos θ , φ ) B Detector A � − d (cos θ ) � f 0 ( v ) − f A ( v ) = f 0 ( v ) exp λ ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  25. Attenuation λ ( v ) − 1 = ¯ ¯ v = ( v, cos θ , φ ) n σ ( v ) B Detector d e ff = 1 � n ( r )d l ¯ n AB A � � − d e ff (cos θ ) f 0 ( v ) − f A ( v ) = f 0 ( v ) exp ¯ λ ( v ) Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  26. Attenuation λ i ( v ) − 1 = ¯ ¯ v = ( v, cos θ , φ ) n i σ ( v ) B Detector d e ff ,i = 1 � n i ( r )d l ¯ n i AB A � species � d e ff ,i (cos θ ) � f 0 ( v ) − f A ( v ) = f 0 ( v ) exp − ¯ λ i ( v ) i Sum over 8 most abundant elements in the Earth: O, Si, Mg, Fe, Ca, Na, S, Al Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  27. Effective Earth-crossing distance Most scattering comes from Oxygen (in the mantle) and Iron (in the core) × 10 23 × 10 32 2 . 0 1 . 2 Oxygen Oxygen Iron Iron 1 . 0 1 . 5 0 . 8 n d e ff ( θ ) [ cm − 2 ] n ( r ) [ cm − 3 ] 1 . 0 0 . 6 0 . 4 ¯ 0 . 5 0 . 2 0 . 0 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 π / 4 π / 2 r/R E θ NB: little Earth-scattering for spin-dependent interactions Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

  28. Deflection v � = ( v � , cos θ � , φ � ) λ i ( v ) − 1 = ¯ ¯ n i σ ( v ) B v = ( v, cos θ , φ ) Detector C A Bradley J Kavanagh (LPTHE, Paris) Earth-scattering of DM MPIK, Heidelberg - 9th Jan. 2017

Recommend


More recommend