searching for the dark matter wind a novel approach to
play

Searching for the Dark Matter Wind: a Novel Approach to Dark Matter - PowerPoint PPT Presentation

Searching for the Dark Matter Wind: a Novel Approach to Dark Matter Detection Jocelyn Monroe, MIT Imperial College HEP Seminar November 8, 2007 Outline The Dark Matter Wind Dark Matter Search Strategy Directionality Where We Are Now: DMTPC


  1. Searching for the Dark Matter Wind: a Novel Approach to Dark Matter Detection Jocelyn Monroe, MIT Imperial College HEP Seminar November 8, 2007

  2. Outline The Dark Matter Wind Dark Matter Search Strategy Directionality Where We Are Now: DMTPC Detector Development Jocelyn Monroe November 8, 2007

  3. Dark Matter is ~25% of the energy density of the universe. Jocelyn Monroe November 8, 2007

  4. 1 st Dark Matter Evidence Fritz Zwicky Vera Rubin Jocelyn Monroe November 8, 2007

  5. Properties density ~ 0.3 GeV/cm 3 optically dark cold mass: ~unconstrained interactions: < weak σ dust-like, collisionless v RMS ~ 230 km/s we are rotating relative to the halo: a dark matter wind Jocelyn Monroe November 8, 2007

  6. Properties density ~ 0.3 GeV/cm 3 optically dark cold mass: ~unconstrained interactions: < weak σ dust-like, collisionless v RMS ~ 230 km/s we are rotating relative to the halo: a dark matter wind Jocelyn Monroe November 8, 2007

  7. Candidates SUSY dark matter (neutralinos, gravitinos, sneutrinos, axinos) axions, simpzillas, light scalar dark matter, little Higgs dark matter, Kaluza-Klein dark matter, CHAMPS, D-matter, Cryptons, SWIMPS, Mirror particles, Brane world dark matter, Q-balls, sterile model neutrinos, etc. Jocelyn Monroe November 8, 2007

  8. Direct Detection Signal: χ N ➙ χ N’ χ χ Backgrounds: γ e - ➙ γ e - ’ n N ➙ n N’ N ➙ N’ + α , e - ν N ➙ ν N’ γ γ Jocelyn Monroe November 8, 2007

  9. χ χ WIMP Scattering kinematics : β D ~ 8E-4! Z E D = 1 2 m D v 2 A A E recoil = E D r ( 1 − cos θ ) 2 4 m D m T r = Spin Independent: ( m D + m T ) 2 χ scatters coherently off of the entire nucleus A: σ ~A 2 q 2 = 2 m T E recoil Spin Dependent: coherent interactions, only unpaired nucleons contribute very low recoil energies to scattering amplitude: σ ~ J(J+1) D. Z. Freedman, PRD 9, 1389 (1974) Jocelyn Monroe November 8, 2007

  10. Measurement Recoil Nucleus χ Kinetic Energy χ N ~ Jocelyn Monroe November 8, 2007

  11. Spin-Independent Cross Section Limits current experiments larger detectors Jocelyn Monroe November 8, 2007

  12. The Wind: Annual Modulation June-December event rate asymmetry ~2-10% Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986) Dama positive result: 6.1 σ excluded by other experiments Jocelyn Monroe November 8, 2007

  13. Spin-Dependent Cross Section Limits current direct detection experiments 10 7 x larger upper limits than SI cross sections Jocelyn Monroe November 8, 2007

  14. The Wind: Directionality Cygnus Daily direction modulation: asymmetry ~ 20-100% in forward-backward event rate. Spergel, Phys. Rev. D36:1353 (1988) a dark matter source! Jocelyn Monroe November 8, 2007

  15. Dark Matter Search Strategy Expected WIMP Interaction Cross Section Backgrounds The Zero-Background Paradigm Jocelyn Monroe November 8, 2007

  16. Signal SUSY+ collider limits: σ ( χ A) may be as small as 10 -48 cm 2 Shrimps, not WIMPS: 1 pb = 10 -36 cm 2 σ (weak) ~ 10 -3 pb σ (DM el) ~ 10 -10 pb ~10 4 below current expt’l sensitivity J. R. Ellis, et al., PRD 71 , 095007 (2005) Jocelyn Monroe November 8, 2007

  17. 10 4 is a lot of σ 10 -28 cm 2 : σ (total inelastic pp at TeVatron) 10 -35 cm 2 : σ (gg ➔ H) at LHC (Standard Model) 10 -37 cm 2 : σ (gg ➔ H) at TeVatron (Standard Model) 10 -39 cm 2 : σ (single top) at TeVatron Not to Scale 10 -40 cm 2 : σ ( ν QE) at MiniBooNE (E ν = 1 GeV) 10 -43 cm 2 : σ ( ν NC Elastic) for geo- ν (E ν = 2 MeV) 10 -45 cm 2 : σ ( ν -e Elastic) for solar ν σ (DM coherent scattering)? 10 -48 cm 2 Jocelyn Monroe November 8, 2007

  18. EM Backgrounds (D. McKinsey) Gamma ray interaction rate is proportional to (# of electrons in detector) x (gamma ray flux) Typical count rate = 100 events/s/kg = 10,000,000 events/day/kg in a good lead shield, rate drops to 100 events/day/kg Best dark matter detectors: sensitive to 0.01 events/day/kg ( σ ~1E-44 cm 2 ) Jocelyn Monroe November 8, 2007

  19. μ μ Neutron Backgrounds γ N* N n (A. Heim/D. M. Mei) eg. Study for CDMS-II Cosmic muons Detector spall neutrons: ~10 -4 neutrons/ (100 GeV μ )/ gm/cm 2 Boulby, neutron flux: 10 -8 - 10 -10 /cm 2 /s (range for depth) Homestake Caverns Jocelyn Monroe November 8, 2007

  20. U and Th Decay Backgrounds can’t shield a detector from U and Th inside, recoiling progeny and associated betas can fake nuclear recoils Jocelyn Monroe November 8, 2007

  21. ν Backgrounds can’t shield a detector from ν coherent elastic scattering of ν solar neutrinos Φ (B 8 ) = 5.86 x 10 6 cm -2 s -1 Z N N 100 events/ton-year = ~ 10 -46 cm 2 limit unless you measure the direction! JM, P. Fisher, PRD76:033007 (2007) Jocelyn Monroe November 8, 2007

  22. Setting a Limit 1. The theoretical dark matter interaction rate is: E R = nuclear recoil energy, � c 1 R 0 � � − c 2 E R � dR exp = E 0 = dark matter particle energy dE R E 0 r E 0 r 2. Experiments measure: �� 2 v 0 �� N 0 ( ρ D / m D ) �� R 0 = σ 0 × exposure √ π A σ A = σ 0 F 2 ( E R , A ) I c , , I c = A 2 F 2 ( E R , A ) = nuclear form factor 3. vary until (90% of the time) theory predicts observed rate σ A 4. Normalize to to compare limits: σ W − N � µ 1 � 2 � 1 � 2 m D m target µ = σ W − N = σ A µ A A ( m D + m target ) Jocelyn Monroe November 8, 2007

  23. ... in the Presence of Background step 3: vary until (90% of the time) σ A theory predicts observed maximum gap between background events S. Yellin, Phys. Rev. D66:032005 (2002) Yellin gap method: a way to make a “zero-background” measurement over a restricted range of an experiment’s acceptance (zero signal too) Jocelyn Monroe November 8, 2007

  24. Directionality Expected Signal Limit Sensitivity Discovery Potential Jocelyn Monroe November 8, 2007

  25. Directional Signal Expectation �� R 0 d 2 R � − ( v E cos ψ − v min ) 2 � 1 � � dE R d ( cos ψ ) = exp v 2 2 E 0 r 0 Cygnus 0.18 Events /kg / day 0.16 0.14 0.12 0.1 0.08 0.06 D. N. Spergel, 0.04 Phys. Rev. D37 1353 (1988) 0.02 0 020406080 Recoil Kinetic Energy (keV) -0.20 0.20.40.60.8 1 ) B A L 100 � ( 120 s o C 140 -0.4 160 -0.6 180 -1-0.8 200 Jocelyn Monroe November 8, 2007

  26. Forward-Backward Asymmetry Define coordinate system with respect to direction to Cygnus (F) (B) Compare integral of cos( ϴ CYGNUS ) above 90% 90 o with below: A = ( forward − backward ) ( forward + backward ) Asymmetry increases with increasing recoil kinetic energy, ~maximal by 100 keV Jocelyn Monroe November 8, 2007

Recommend


More recommend