reaction pathway analysis of the bio conversion of
play

Reaction Pathway Analysis of the (Bio)conversion of - PowerPoint PPT Presentation

Department of Chemical and Biological Engineering 1 Reaction Pathway Analysis of the (Bio)conversion of (Bio)macromolecules Linda J. Broadbelt Department of Chemical and Biological Engineering Northwestern University Department of Chemical


  1. Department of Chemical and Biological Engineering 1 Reaction Pathway Analysis of the (Bio)conversion of (Bio)macromolecules Linda J. Broadbelt Department of Chemical and Biological Engineering Northwestern University

  2. Department of Chemical and Biological Engineering 2 Multiscale modeling of chemical reactivity 10 4 s Continuum scale Reactor design Mechanism validation Time Mesoscale Reaction dynamics Molecular dynamics Atomic Scale Transition states Quantum effects Elementary reaction steps 10 -10 s > 10 -10 m >10 0 m Length

  3. Department of Chemical and Biological Engineering 3 10 4 s Continuum scale. Reactor design. Mechanism validation Time Mesoscale. Reaction dynamics. Molecular dynamics Atomic Scale. Transition states. Quantum effects. Elementary reaction steps 10 -10 s > 10 -10 m >10 0 m Length

  4. Department of Chemical and Biological Engineering 4 Thermochemical Catalysis Biocatalysis conversion

  5. Department of Chemical and Biological Engineering 5 Thermochemical Catalysis Biocatalysis conversion

  6. 6 How can we use non-food biomass to replace fossil fuels? Extraction Extraction Process Chemicals Chemicals Heat Gas Upgrading Upgrading Yield ~13% Transport Transport Gasification Gasification Fuels, etc. Fuels, etc. Liquid Liquid Biomass Fast Turbine Turbine Bio-Oil (switchgrass, Bio-Oil Pyrolysis stover, etc.) Yield ~75% Yield ~75% Electricity Electricity Engine Engine Solid Char Co-firing Co-firing Heat Heat Yield ~12% Pyrolysis Boiler Boiler Heat Charcoal Applications Bridgwater, A. V. Therm. Sci., 2004 , 8 , 21.

  7. 7 How can we model fast pyrolysis? Empirical k 2 Volatiles k 1 Active Cellulose Cellulose k 3 Char + Gases Shafizadeh, F. J. Anal. Appl. Pyrolysis 1982 , 3, 283. 0.95 Hydroxy-acethaldeyde + 0.25 Glyoxal + k 3 0.20 CH 3 CHO + 0.20 C 3 H 6 O + 0.25 5-HMF + 0.16 CO 2 + 0.23 CO + 0.1 CH 4 + 0.9 H 2 O + 0.61 Char Active k 1 Cellulose k 4 Cellulose Levoglucosan k 2 6Char + 5H 2 O Calonaci, M.; Grana, R.; Barker Hemings, E.; Bozzano, G.; Dente, M.; Ranzi, E. Energy Fuels 2010 , 24 , 5727.

  8. 8 Postulate mechanisms based on known products Exp. yields at 500 ° C: Cellulose Glycosidic bond Levoglucosan cleavage 59 wt% Retro Diels-Alder Glycolaldehyde reactions 6.7 wt% 1,2-Dehydration and 5-HMF hydrolysis + dehydration 2.8 wt% Cyclic Grob fragmentation, 2-Furaldehyde hydrolysis, dehydration 1.3 wt% 1,3-Dehydration, Formic acid subsequent elimination 6.4 wt% Condensation of C, CO, CO 2 , H 2 O, H 2 small fragments … Patwardhan, P.; Satrio, J. A.; Brown, Vinu, R.; Broadbelt, L. J. Energy R. C.; Shanks, B. H. J. Anal. Appl. Environ. Sci. 2012 , 5 , 9808. Pyrolysis 2009 , 86 , 323.

  9. 9 Kinetic parameters needed for every reaction Levoglucosan Glycosidic bond 59 wt% cleavage homolytic (multiple steps) ? (multiple steps) heterolytic Mayes, H. B.; Broadbelt, L. J. J. Phys. Chem. A 2012 , 116 , 7098.

  10. 10 New picture of cellulose unraveling OH • Quantum mechanics (Gaussian 09 rev B) OH H 3 C O HO O OH HO O O – DFT (M06-2X/6-311+G(3df,2p)//M06-2X/6-31+G(2df,p)) OH OH – Implicit solvent to model pyrolysis electrostatic environment • Transition-state-theory OH OH OH OH O O HO O HO O O HO O HO O O O OH OH OH OH Initiation OH OH OH O O O HO HO O O O + HO HO O HO O O OH OH OH OH Depropagation OH OH OH O O O HO HO O HO O + + HO HO O HO O O O OH OH OH Mayes, H. B. ; Broadbelt, L. J. J. Phys. Chem. A 2012 , 116 , 7098.

  11. 11 Validation • Kinetic parameters used in neat cellulose pyrolysis microkinetic model • Predicted levoglucosan yield compared to experiment Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012 , 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13274 – 13289; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13290 – 13301. Patwardhan, P. Satrio, J. A. Brown, R. C.; Shanks, B. H. J. Anal. Appl. Pyrolysis 2009 , 86 , 323.

  12. 12 Microkinetic model provides detailed product speciation Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012 , 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13274 – 13289; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13290 – 13301.

  13. 13 Microkinetic model further tracks species time evolution for cellulose pyrolysis at 500 ° C at 1 atm Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012 , 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13274 – 13289; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13290 – 13301.

  14. Department of Chemical and Biological Engineering 14 Thermochemical Catalysis Biocatalysis conversion

  15. 15 Extending the microkinetic model Experimental Results homolytic Levoglucosan - pyranose Glycolaldehyde ? Formic acid Levoglucosan - furanose Cellulose, Neat heterolytic Cellulose + 0.006 mmol Anhydro xylopyranose NaCl / g cellulose Cellulose 5-HMF Hemicellulose 0 10 20 30 40 50 60 Lignin wt % Yield Inorganic salts Patwardhan, P. R.; Satrio, J. A; Brown, R. C.; Shanks, B. H. Bioresour. Technol. 2010 , 101 , 4646.

  16. 16 Determine effect of Na + on select pyrolysis reactions 36 OH 6 E. O A. 17 O OH HO HO OH OH O ‒ H 2 O HO OH OH HO OH ‒ H 2 O 2 ‒ H 2 O ‒ H 2 O OH HO OH ‒ H 2 O O OH HO 5 6 17 OH 7 4 HO OH O ‒ H 2 O ‒ H 2 O OH O O O O ‒ H 2 O O HO HO OH HO HO OH O OH HO OH HO OH OH HO OH HO OH HO OH 35 OH OH HO OH HO OH ‒ H 2 O ‒ H 2 O 7 OH O OH ‒ H 2 O HO O O O 3 OH OH 10 OH HO OH ‒ H 2 O HO OH O O HO OH HO HO HO 34 33 HO ‒ H 2 O F. OH OH OH OH ‒ H 2 O ‒ H 2 O O ‒ H 2 O O HO HO O O 1 OH OH ‒ H 2 O OH 11 ‒ H 2 O 39 8 OH O O OH HO HO O O HO O O O ‒ H 2 O ‒ H 2 O HO HO HO HO OH O 12 ‒ H 2 O OH OH OH HO 8 9 HO O ‒ H 2 O OH HO OH ‒ H 2 O 7 OH O O O ‒ H 2 O HO ‒ H 2 O HO OH O O O O HO OH OH HO HO O O ‒ H 2 O 15 HO OH 13 14 38 37 OH HO OH G. OH O ‒ H 2 O HO O O O HO HO HO HO OH HO 16 OH 1 OH 40 OH D. C. 24 OH 29 OH 25 O 12 OH HO OH OH O B. ‒ H 2 O HO OH OH O O O HO HO HO HO HO O 23 OH OH OH HO HO OH HO 16 HO H O OH 32 ‒ H 2 O OH O OH 2 OH 41 HO ‒ H 2 O OH O HO O HO ‒ H 2 O ‒ H 2 O 42 43 ‒ H 2 O H. ‒ H 2 O OH OH HO ‒ H 2 O HO 2 O OH HO ‒ H 2 O 1 HO O OH OH OH OH O ‒ H 2 O OH 10 OH 3 OH OH O O O HO HO ‒ H 2 O HO HO O HO O HO OH OH HO HO HO OH HO ‒ H 2 O OH 15 OH HO OH OH 3 OH OH 28 OH OH OH OH OH ‒ H 2 O ‒ H 2 O ‒ H 2 O ‒ H 2 O O O ‒ H 2 O HO HO OH OH 44 OH 45 OH OH OH OH OH OH OH O HO HO 31 O O O HO ‒ H 2 O OH O O OH 27 OH HO HO O OH OH 30 HO 18 26 OH HO HO OH OH OH HO OH HO OH HO OH Mayes, H. B.; Nolte, M. W.; Beckham, G. T.; Shanks, B. H.; Broadbelt, L.J. ACS Catal., 2015 , 5 , 192. Mayes, H. B.; Tian, J.; Nolte, M. W.; Shanks, B. H.; Beckham, G. T.; Gnanakaran, S.; Broadbelt, L. J. J. Phys. Chem. B, 2014 , 118 , 1990.

  17. 17 Incorporation into kinetic model Key products wt% yields from pyrolysis with 0.00 to 0.34 mmol NaCl / g cellobiose levoglucosan CO 2 5-HMF Zhou, X.; Nolte, M. W.; Mayes, H. B.; Shanks, B. H.; Broadbelt, L. J. AIChE Journal , 2016 , 62(3), 766-777 and 778-791 .

  18. 18 Insight: Na + favoring competing dehydration reactions 18

  19. Department of Chemical and Biological Engineering 19 Thermochemical Catalysis Biocatalysis conversion

  20. 20 Metabolic Models Modeling as a key component of metabolic engineering toolbox R2 Reactions K A B …. R3 R1 R2 R3 R N R1 …. -1 -1 0 A D E C …. B 0 1 -1 N O C Metabolites …. L 2 0 0 D J M …. 0 0 1 E …. 0 0 1 I F … … … … S matrix H G R1: A  2C Maximize v product R2: A  B Subject to R3: B  D + E …. N · v = 0 Reaction N a i ≤ v i ≤ b i Contador, et al. Metabolic Engineering (2009) https://www.e-education.psu.edu/files/worldofweather/image/Section5/Katrina_track_gfs_ensemble_18Z_August27%20(Medium).png

  21. 21 Metabolic Models What can we model? Reaction Media Changes Heterologous Knockouts Expression E E E B B B A D A D A D P C C F F C F

  22. 22 Reaction Network (Mechanism) as Foundation of Metabolic Models •Reactants , intermediates D G 3 D G 1 k 3 k 2 and products k 1 D G 8 D G 6 D G 7 D G 5 •Reactions k 8 k 6 k 7 k 5 D G 4 D G 11 k 4 k 11 D G 12 •Thermodynamic parameters D G 13 D G 10 k 12 D G 14 k 13 k 10 k 14 D G 9 •Kinetic parameters k 9 D G 18 D G 15 k 18 k 15 D G 17 D G 16 k 16 k 17

  23. 23 Computer-Generated Reaction Networks to Fill Gaps or Identify Novel Reactions • Graph Theory D G 3 • Reaction Matrix D G 1 k 3 k 2 k 1 Operations • Connectivity D G 8 D G 6 D G 7 Reactants Scan D G 5 k 8 k 6 k 7 Reaction • Uniqueness k 5 D G 4 Types D G 11 Determination k 4 k 11 Reaction • Property D G 12 D G 13 D G 10 Rules k 12 Calculation D G 14 k 13 k 10 k 14 • Termination D G 9 k 9 D G 18 Criteria D G 15 k 18 k 15 D G 17 D G 16 k 16 k 17

Recommend


More recommend