bio pepad integrating exponential and deterministic delays
play

Bio-PEPAd: Integrating exponential and deterministic delays Jane - PowerPoint PPT Presentation

Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd: Integrating exponential and deterministic delays Jane Hillston. LFCS and SynthSys, University of Edinburgh 16th June 2012 Joint work with


  1. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPA In Bio-PEPA: • Unique rates are associated with each reaction (action) type, separately from the specification of the logical behaviour. These rates may be specified by functions. • The representation of an action within a component (species) records the stoichiometry of that entity with respect to that reaction. The role of the entity is also distinguished. • The local states of components are quantitative rather than functional, i.e. distinct states of the species are represented as distinct components, not derivatives of a single component.

  2. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙

  3. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙

  4. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙

  5. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙

  6. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙

  7. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙ Model component P ::= P ⊲ ⊳ L P | S ( l )

  8. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙ Model component P ::= P ⊲ ⊳ L P | S ( l )

  9. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙ Model component P ::= P ⊲ ⊳ L P | S ( l )

  10. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙ Model component P ::= P ⊲ ⊳ L P | S ( l ) The parameter l is abstract, recording quantitative information about the species.

  11. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The syntax Sequential component (species component) S ::= ( α, κ ) op S | S + S | C where op = ↓ | ↑ | ⊕ | ⊖ | ⊙ Model component P ::= P ⊲ ⊳ L P | S ( l ) The parameter l is abstract, recording quantitative information about the species. Depending on the interpretation, this quantity may be: • number of molecules (SSA), • number of molecules (ODE) or • a level within a semi-quantitative model (CTMC).

  12. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The Bio-PEPA system A Bio-PEPA system P is a 6-tuple �V , N , K , F R , Comp , P � , where: • V is the set of compartments; • N is the set of quantities describing each species (step size, number of levels, location, ...); • K is the set of parameter definitions; • F R is the set of functional rate definitions; • Comp is the set of definitions of sequential components; • P is the model component describing the system.

  13. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics The semantics of Bio-PEPA is given as a small-step operational semantics, intended for deriving the CTMC with levels.

  14. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics The semantics of Bio-PEPA is given as a small-step operational semantics, intended for deriving the CTMC with levels. We define two relations over the processes: 1. capability relation, that supports the derivation of quantitative information;

  15. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics The semantics of Bio-PEPA is given as a small-step operational semantics, intended for deriving the CTMC with levels. We define two relations over the processes: 1. capability relation, that supports the derivation of quantitative information; 2. stochastic relation, that gives the rates associated with each action.

  16. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: prefix rules ( α, [ S : ↓ ( l ,κ )]) prefixReac (( α, κ ) ↓ S )( l ) − − − − − − − − − − → c S ( l − κ ) κ ≤ l ≤ N

  17. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: prefix rules ( α, [ S : ↓ ( l ,κ )]) prefixReac (( α, κ ) ↓ S )( l ) − − − − − − − − − − → c S ( l − κ ) κ ≤ l ≤ N ( α, [ S : ↑ ( l ,κ )]) (( α, κ ) ↑ S )( l ) → c S ( l + κ ) prefixProd − − − − − − − − − − 0 ≤ l ≤ ( N − κ )

  18. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: prefix rules ( α, [ S : ↓ ( l ,κ )]) prefixReac (( α, κ ) ↓ S )( l ) − − − − − − − − − − → c S ( l − κ ) κ ≤ l ≤ N ( α, [ S : ↑ ( l ,κ )]) (( α, κ ) ↑ S )( l ) → c S ( l + κ ) prefixProd − − − − − − − − − − 0 ≤ l ≤ ( N − κ ) ( α, [ S : op ( l ,κ )]) (( α, κ ) op S )( l ) − − − − − − − − − − − → c S ( l ) prefixMod 0 ≤ l ≤ N with op = ⊙ , ⊕ , or ⊖

  19. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: constant and choice rules ( α, v ) ′ 1 ( l ′ ) S 1 ( l ) − − − − → c S Choice1 ( α, v ) ′ 1 ( l ′ ) ( S 1 + S 2 )( l ) − − − − → c S

  20. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: constant and choice rules ( α, v ) ′ 1 ( l ′ ) S 1 ( l ) − − − − → c S Choice1 ( α, v ) ′ 1 ( l ′ ) ( S 1 + S 2 )( l ) − − − − → c S ( α, v ) ′ 2 ( l ′ ) S 2 ( l ) − − − − → c S Choice2 ( α, v ) ′ 2 ( l ′ ) ( S 1 + S 2 )( l ) − − − − → c S

  21. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: constant and choice rules ( α, v ) ′ 1 ( l ′ ) S 1 ( l ) − − − − → c S Choice1 ( α, v ) ′ 1 ( l ′ ) ( S 1 + S 2 )( l ) − − − − → c S ( α, v ) ′ 2 ( l ′ ) S 2 ( l ) − − − − → c S Choice2 ( α, v ) ′ 2 ( l ′ ) ( S 1 + S 2 )( l ) − − − − → c S ( α, S :[ op ( l ,κ ))] → c S ′ ( l ′ ) S ( l ) − − − − − − − − − − − def with C = S Constant ( α, C :[ op ( l ,κ ))] → c S ′ ( l ′ ) C ( l ) − − − − − − − − − − −

  22. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: cooperation rules ( α, v ) → c P ′ P 1 − − − − 1 coop1 with α � L ( α, v ) → c P ′ P 1 ⊲ ⊳ 1 ⊲ ⊳ L P 2 − − − − L P 2

  23. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: cooperation rules ( α, v ) → c P ′ P 1 − − − − 1 coop1 with α � L ( α, v ) → c P ′ P 1 ⊲ ⊳ 1 ⊲ ⊳ L P 2 − − − − L P 2 ( α, v ) → c P ′ P 2 − − − − 2 coop2 with α � L ( α, v ) L P ′ P 1 ⊲ ⊳ L P 2 − − − − → c P 1 ⊲ ⊳ 2

  24. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: cooperation rules ( α, v ) → c P ′ P 1 − − − − 1 coop1 with α � L ( α, v ) → c P ′ P 1 ⊲ ⊳ 1 ⊲ ⊳ L P 2 − − − − L P 2 ( α, v ) → c P ′ P 2 − − − − 2 coop2 with α � L ( α, v ) L P ′ P 1 ⊲ ⊳ L P 2 − − − − → c P 1 ⊲ ⊳ 2 ( α, v 1 ) ( α, v 2 ) → c P ′ → c P ′ P 1 − − − − P 2 − − − − 1 2 with α ∈ L coopFinal ( α, v 1 :: v 2 ) → c P ′ L P ′ P 1 ⊲ L P 2 ⊳ − − − − − − − 1 ⊲ ⊳ 2

  25. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: rates and transition system In order to derive the rates we consider the stochastic relation −→ s ⊆ P × Γ × P , with γ ∈ Γ := ( α, r ) and r ∈ R + . . .

  26. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: rates and transition system In order to derive the rates we consider the stochastic relation −→ s ⊆ P × Γ × P , with γ ∈ Γ := ( α, r ) and r ∈ R + . The relation is defined in terms of the previous one: . .

  27. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: rates and transition system In order to derive the rates we consider the stochastic relation −→ s ⊆ P × Γ × P , with γ ∈ Γ := ( α, r ) and r ∈ R + . The relation is defined in terms of the previous one: ( α j , v ) → c P ′ P − − − − ( α j , r α j ) −→ s �V , N , K , F R , Comp , P ′ � �V , N , K , F R , Comp , P � − − . .

  28. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: rates and transition system In order to derive the rates we consider the stochastic relation −→ s ⊆ P × Γ × P , with γ ∈ Γ := ( α, r ) and r ∈ R + . The relation is defined in terms of the previous one: ( α j , v ) → c P ′ P − − − − ( α j , r α j ) −→ s �V , N , K , F R , Comp , P ′ � �V , N , K , F R , Comp , P � − − r α j represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition. .

  29. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Semantics: rates and transition system In order to derive the rates we consider the stochastic relation −→ s ⊆ P × Γ × P , with γ ∈ Γ := ( α, r ) and r ∈ R + . The relation is defined in terms of the previous one: ( α j , v ) → c P ′ P − − − − ( α j , r α j ) −→ s �V , N , K , F R , Comp , P ′ � �V , N , K , F R , Comp , P � − − r α j represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition. The rate r α j is defined as f α j ( V , N , K ) / h .

  30. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example • We model an event that transforms an element of species A into an element of species B .

  31. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example • We model an event that transforms an element of species A into an element of species B . • Transformation happens at a rate k and obeys a mass-action kinetic law.

  32. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example • We model an event that transforms an element of species A into an element of species B . • Transformation happens at a rate k and obeys a mass-action kinetic law. • Such a model is constituted by a single reaction channel of k the form A − → B .

  33. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example • We model an event that transforms an element of species A into an element of species B . • Transformation happens at a rate k and obeys a mass-action kinetic law. • Such a model is constituted by a single reaction channel of k the form A − → B . • We assume the initial state contains three elements of species A and no elements of species B ;

  34. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example • We model an event that transforms an element of species A into an element of species B . • Transformation happens at a rate k and obeys a mass-action kinetic law. • Such a model is constituted by a single reaction channel of k the form A − → B . • We assume the initial state contains three elements of species A and no elements of species B ; • Formally it is described by the 2-dimensional vector x 0 = ( 3 , 0 ) T .

  35. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example in Bio-PEPA The Bio-PEPA processes modelling the species are def def A = ( α, 1 ) ↓ A B = ( α, 1 ) ↑ B where α is the action corresponding to the reaction and f α = f MA ( k ) .

  36. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example in Bio-PEPA The Bio-PEPA processes modelling the species are def def A = ( α, 1 ) ↓ A B = ( α, 1 ) ↑ B where α is the action corresponding to the reaction and f α = f MA ( k ) . We assume that the species have maximum levels N A = N B = 3.

  37. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example in Bio-PEPA The Bio-PEPA processes modelling the species are def def A = ( α, 1 ) ↓ A B = ( α, 1 ) ↑ B where α is the action corresponding to the reaction and f α = f MA ( k ) . We assume that the species have maximum levels N A = N B = 3. The initial configuration of the process is A ( 3 ) ⊲ ⊳ { α } B ( 0 ) .

  38. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example in Bio-PEPA The components of the system in which this process is embedded are: K = { k ′ = k } V = { cell : 1 } N = { A in cell : N A = 3 , h A = 1 ; F = { f α = f MA ( k ′ ) } B in cell : N B = 3 , h A = 1 } def def Comp = { A = ( α, 1 ) ↓ A , B = ( α, 1 ) ↑ B } P = A ( 3 ) ⊲ { α } B ( 0 ) . ⊳

  39. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The SLTS for the Bio-PEPA example Starting from the initial configuration X ( t 0 ) = 0 the process eventually reaches the final state ( 0 , 3 ) , which corresponds to the process A ( 0 ) ⊲ { α } B ( 3 ) . ⊳

  40. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Outline Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions

  41. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd: Syntax Bio-PEPAd is a conservative extension of Bio-PEPA, so only minimal changes to the syntax are made.

  42. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd: Syntax Bio-PEPAd is a conservative extension of Bio-PEPA, so only minimal changes to the syntax are made. Specifically, the species and process definitions remain unchanged but we must add information about action delays to the system (cf. rate functions).

  43. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd: Syntax Bio-PEPAd is a conservative extension of Bio-PEPA, so only minimal changes to the syntax are made. Specifically, the species and process definitions remain unchanged but we must add information about action delays to the system (cf. rate functions). Delays are defined by functions belonging to the family � σ : A → R + � ∈ ∆ such that σ ( α ) denotes the delay of action α ∈ A .

  44. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd: Syntax Bio-PEPAd is a conservative extension of Bio-PEPA, so only minimal changes to the syntax are made. Specifically, the species and process definitions remain unchanged but we must add information about action delays to the system (cf. rate functions). Delays are defined by functions belonging to the family � σ : A → R + � ∈ ∆ such that σ ( α ) denotes the delay of action α ∈ A . Currently we assume all actions have a non-zero delay.

  45. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd system A Bio-PEPAd system is a 7-tuple �V , N , K , F , Comp , σ, P � where: • �V , N , K , F , Comp , P � is a Bio-PEPA system; • σ ∈ ∆ is a function used to specify the delays of the actions.

  46. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Process configuration Bio-PEPAd process configurations are defined by the following syntax: � � C S ::= ( α, κ ) op C S C S + C S C � � � � � C P ::= C P ⊲ ⊳ L C P C S ( l , L ) � � where L is a list of 4-tuples ( l ′ , κ ′ , α ′ , op ′ ) with l , κ ∈ N , α ∈ A and op ∈ {↓ , ↑ , ⊙ , ⊕ , ⊖} .

  47. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Species S ( l , L ) A species S ( l , L ) is a species • with a quantitative level l , • which is currently involved in the actions with delay described by the list L .

  48. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Species S ( l , L ) A species S ( l , L ) is a species • with a quantitative level l , • which is currently involved in the actions with delay described by the list L . For example, if ( l ′ , κ, α, op ) ∈ L there are κ levels of concentration of species S involved in a currently running action α which fired when the level of S was l ′ , and its role was op .

  49. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd semantics • The effect of the delay is to separate the occurrence of the reaction from its effect.

  50. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd semantics • The effect of the delay is to separate the occurrence of the reaction from its effect. • We give the language an operational semantics in the Starting-Terminating (ST) style, previously used for non-Markovian stochastic process algebras such as IGSMP .

  51. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd semantics • The effect of the delay is to separate the occurrence of the reaction from its effect. • We give the language an operational semantics in the Starting-Terminating (ST) style, previously used for non-Markovian stochastic process algebras such as IGSMP . • In this case the end of the exponentially distributed event corresponds to the start of the action, denoted α + .

  52. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd semantics • The effect of the delay is to separate the occurrence of the reaction from its effect. • We give the language an operational semantics in the Starting-Terminating (ST) style, previously used for non-Markovian stochastic process algebras such as IGSMP . • In this case the end of the exponentially distributed event corresponds to the start of the action, denoted α + . • Whereas the end of the deterministically timed delay corresponds to terminating the action, denoted α − .

  53. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Bio-PEPAd semantics • The effect of the delay is to separate the occurrence of the reaction from its effect. • We give the language an operational semantics in the Starting-Terminating (ST) style, previously used for non-Markovian stochastic process algebras such as IGSMP . • In this case the end of the exponentially distributed event corresponds to the start of the action, denoted α + . • Whereas the end of the deterministically timed delay corresponds to terminating the action, denoted α − . • As usual for the ST style, we have two transition relations over process configurations.

  54. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Initial process configuration From Bio-PEPAd process P we derive its corresponding process configuration P C using a function µ : P → C such that µ ( P 1 ⊲ ⊳ L P 2 ) = µ ( P 1 ) ⊲ ⊳ µ (( α, κ ) op S ) = ( α, κ ) op S L µ ( P 2 ) µ ( S 1 + S 2 ) = S 1 + S 2 µ ( S ( l )) = S ( l , [ ]) .

  55. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Initial process configuration From Bio-PEPAd process P we derive its corresponding process configuration P C using a function µ : P → C such that µ ( P 1 ⊲ L P 2 ) = µ ( P 1 ) ⊲ ⊳ ⊳ µ (( α, κ ) op S ) = ( α, κ ) op S L µ ( P 2 ) µ ( S 1 + S 2 ) = S 1 + S 2 µ ( S ( l )) = S ( l , [ ]) . For example, the process S ( l 1 ) ⊲ L 1 S ( l 2 ) ⊲ ⊳ L 2 S ( l 3 ) is transformed into ⊳ the configuration S ( l 1 , [ ]) ⊲ L 1 S ( l 2 , [ ]) ⊲ ⊳ L 2 S ( l 3 , [ ]) . ⊳

  56. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Auxiliary functions We define four auxiliary functions to examine and manipulate the scheduling lists: • pick : given α and a scheduling list, select the first α action entry in the list. • del : given α and a scheduling list, remove the first α action entry in the list. • prod : given a scheduling list for species S , select those entries in which S is involved as a product. • pend : given a scheduling list find how many levels are involved.

  57. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The start relation: Prefix ( α + , [ S : ↓ ( l ,κ )]) ( α, κ ) ↓ S ( l , L ) → st S ( l − κ, L @[( l , κ, α, ↓ )]) − − − − − − − − − − − κ ≤ l ≤ N ( α + , [ S : ↑ ( l ,κ )]) ( α, κ ) ↑ S ( l , L ) → st S ( l , L @[( l , κ, α, ↑ )]) 0 ≤ l + pend prod L ≤ N − − − − − − − − − − − ( α + , [ S : ⊕ ( l ,κ )]) ( α, κ ) ⊕ S ( l , L ) − − − − − − − − − − − → st S ( l , L @[( l , κ, α, ⊕ )]) κ ≤ l ≤ N ( α + , [ S : op ( l ,κ )]) ( α, κ ) op S ( l , L ) → st S ( l , L @[( l , κ, α, op )]) − − − − − − − − − − − 1 ≤ l ≤ N , op ∈ {⊙ , ⊖}

  58. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The start relation: Choice and Constant ( α + , w ) → st S ′ 1 ( l ′ , L ′ ) S 1 ( l , L ) − − − − − ( α + , w ) → st S ′ 1 ( l ′ , L ′ ) ( S 1 + S 2 )( l , L ) − − − − − ( α + , w ) → st S ′ 2 ( l ′ , L ′ ) S 2 ( l , L ) − − − − − ( α + , w ) → st S ′ 2 ( l ′ , L ′ ) ( S 1 + S 2 )( l , L ) − − − − −

  59. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The start relation: Choice and Constant ( α + , w ) → st S ′ 1 ( l ′ , L ′ ) S 1 ( l , L ) − − − − − ( α + , w ) → st S ′ 1 ( l ′ , L ′ ) ( S 1 + S 2 )( l , L ) − − − − − ( α + , w ) → st S ′ 2 ( l ′ , L ′ ) S 2 ( l , L ) − − − − − ( α + , w ) → st S ′ 2 ( l ′ , L ′ ) ( S 1 + S 2 )( l , L ) − − − − − ( α + , w ) def → st S ′ ( l ′ , L ′ ) S ( l , L ) = S ( l , L ) − − − − − C ( α + , w ) → st S ′ ( l ′ , L ′ ) C − − − − −

  60. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The start relation: Cooperation ( α + , w ) → st P ′ P 1 − − − − − α � L 1 ( α + , w ) → st P ′ P 1 ⊲ ⊳ L P 2 − − − − − 1 ⊲ ⊳ L P 2 ( α + , w ) → st P ′ P 2 − − − − − α � L 2 ( α + , w ) P 1 ⊲ ⊳ → st P 1 ⊲ ⊳ L P ′ L P 2 − − − − − 2 ( α + , w 1 ) ( α + , w 2 ) → st P ′ → st P ′ P 1 − − − − − − P 2 − − − − − − α ∈ L 1 2 ( α + , w 1 @ w 2 ) → st P ′ L P ′ P 1 ⊲ ⊳ L P 2 − − − − − − − − − 1 ⊲ ⊳ 2

  61. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The completion relation: Ongoing actions pick α L = ( l , κ, α, ↑ ) ( α − , [ S : ↑ ( l ,κ )]) → co S ( l ′ + k , del α L ) S ( l ′ , L ) − − − − − − − − − − − pick α L = ( l , κ, α, op ) op ∈ {↓ , ⊙ , ⊕ , ⊖} ( α − , [ S : op ( l ,κ )]) S ( l ′ , L ) − − − − − − − − − − − → co S ( l ′ , del α L )

  62. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The completion relation: Choice and Constant ( α − , w ) ( α − , w ) → co S ′ 1 ( l ′ , L ′ ) → co S ′ 2 ( l ′ , L ′ ) S 1 ( l , L ) S 2 ( l , L ) − − − − − − − − − − ( α − , w ) ( α − , w ) → co S ′ → co S ′ ( S 1 + S 2 )( l , L ) 1 ( l ′ , L ′ ) ( S 1 + S 2 )( l , L ) 2 ( l ′ , L ′ ) − − − − − − − − − − ( α − , w ) def → co S ′ ( l ′ , L ′ ) S ( l , L ) = S ( l , L ) − − − − − C ( α − , w ) → co S ′ ( l ′ , L ′ ) C − − − − −

  63. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The completion relation: Cooperation ( α − , w ) ( α − , w ) → co P ′ → co P ′ P 1 − − − − − α � L P 2 − − − − − α � L 1 2 ( α − , w ) ( α − , w ) P 1 ⊲ ⊳ → co P ′ 1 ⊲ ⊳ P 1 ⊲ ⊳ → co P 1 ⊲ L P ′ ⊳ L P 2 − − − − − L P 2 L P 2 − − − − − 2 ( α − , w 1 ) ( α − , w 2 ) → co P ′ → co P ′ P 1 − − − − − P 2 − − − − − α ∈ L 1 2 ( α − , w 1 @ w 2 ) P 1 ⊲ ⊳ → co P ′ 1 ⊲ ⊳ L P ′ L P 2 − − − − − − − − − 2

  64. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions The stochastic relation ( α + , w ) → st P ′ r α = f α [ w , N , K ] h − 1 P − − − − − ( α + , r α ,σ ( α )) → s �V , N , K , F , Comp , σ, P ′ � �V , N , K , F , Comp , σ, P � − − − − − − − − − − ( α − , w ) → co P ′ r α = f α [ w , N , K ] h − 1 P − − − − − ( α − , r α ,σ ( α )) → s �V , N , K , F , Comp , σ, P ′ � �V , N , K , F , Comp , σ, P � − − − − − − − − −

  65. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Timing aspects of Bio-PEPAd • Note that the underlying SLTS does not contain an explicit quantitative notion of time.

  66. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Timing aspects of Bio-PEPAd • Note that the underlying SLTS does not contain an explicit quantitative notion of time. • By means of the ST semantics, in Bio-PEPAd a qualitative notion of time can be retrieved by observing state changes induced by either the start or the completion of an action.

  67. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Timing aspects of Bio-PEPAd • Note that the underlying SLTS does not contain an explicit quantitative notion of time. • By means of the ST semantics, in Bio-PEPAd a qualitative notion of time can be retrieved by observing state changes induced by either the start or the completion of an action. • Moreover, by construction, instances of an action complete while respecting their starting order.

  68. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Timing aspects of Bio-PEPAd • Note that the underlying SLTS does not contain an explicit quantitative notion of time. • By means of the ST semantics, in Bio-PEPAd a qualitative notion of time can be retrieved by observing state changes induced by either the start or the completion of an action. • Moreover, by construction, instances of an action complete while respecting their starting order. • However note that the SLTS contains all the potential behaviours for a process configuration but some of these may not be possible given the kinetic information of the system.

  69. Introduction Bio-PEPA Bio-PEPAd Analysis of Bio-PEPAd Bio-PEPAd vs. Bio-PEPA Conclusions Small example revisited To illustrate Bio-PEPAd we consider again the small example earlier modelled in Bio-PEPA: k A − → B

Recommend


More recommend