purity dependant markov models for microsatellite mutation
play

Purity Dependant Markov Models for Microsatellite Mutation Tristan - PowerPoint PPT Presentation

Purity Dependant Markov Models for Microsatellite Mutation Tristan L. Stark University of Tasmania tlstark@utas.edu.au November 5, 2014 Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 1 / 24 Overview Microsatellites 1


  1. Purity Dependant Markov Models for Microsatellite Mutation Tristan L. Stark University of Tasmania tlstark@utas.edu.au November 5, 2014 Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 1 / 24

  2. Overview Microsatellites 1 Existing Models 2 Purity-dependant Model 3 Applications 4 Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 2 / 24

  3. Microsatellites Repeats of a short motif, e.g. AT repeated 6 times: A T A T A T A T A T A T Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 3 / 24

  4. Microsatellites Repeats of a short motif, e.g. AT repeated 6 times: A T A T A T A T A T A T Think of microsatellites as repeat units: AT AT AT AT AT AT Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 3 / 24

  5. Microsatellites Repeats of a short motif, e.g. AT repeated 6 times: A T A T A T A T A T A T Think of microsatellites as repeat units: AT AT AT AT AT AT Highly polymorphic. Abundant in eukaryote genomes. Often selectively neutral. Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 3 / 24

  6. Slipped-strand mispairing Contraction During replication, a loop may form in the template strand leading to a decrease in the number of repeats in the new strand. Loop formed in Template Strand A T T A Template Strand A T A T A T A T A T A T T A T A T A T A T A T A New Strand Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 4 / 24

  7. Slipped-strand mispairing Expansion Alternatively, a loop may form in the new strand, leading to an increase in repeat number relative to the template. Template Strand A T A T A T A T A T A T T A T A T A T A T A T A New Strand A T Loop formed in New Strand T A Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 5 / 24

  8. Models for repeat number e.g. a symmetric random walk: λ i − 1 λ 1 λ i i − 1 i + 1 1 2 i . . . λ 2 λ i λ i +1 The main factors accounted for are: Length dependence of mutation rate. Bias towards contraction or expansion. Size of the mutation events. Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 6 / 24

  9. General one-phase slippage model [Wu and Drummond, 2011] proposed a class of models which captures many of the models in the literature as subclasses. This model allows for: Quadratic functions of repeat number for mutation rate. 1 Length dependent mutational bias. 2 Geometrically distributed slippage event sizes. 3 Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 7 / 24

  10. General one-phase slippage model [Wu and Drummond, 2011] proposed a class of models which captures many of the models in the literature as subclasses. This model allows for: Quadratic functions of repeat number for mutation rate. 1 Length dependent mutational bias. 2 Geometrically distributed slippage event sizes. 3 For the one-phase models (slippage events of size 1 only) model is given by  α ( u 0 , u 1 , u 2 , i ) β ( b 0 , b 1 , i ) if i − j = − 1   q ij = α ( u 0 , u 1 , u 2 , i )(1 − β ( b 0 , b 1 , i )) if i − j = 1  − � k � = i q ik if i = j .  Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 7 / 24

  11. Point mutation Microsatellites also susceptible to point mutations. AT AT AT AC AT AT How to deal with this? AT AT AT AT AT Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 8 / 24

  12. Point mutation These models lose useful information, and may invalidate IID assumption. Loop forming around impure repeat. A C T A Template Strand A T A T A T A T A T A T New Strand T A T A T A T A T A T A Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 9 / 24

  13. Kruglyak’s proportional slippage model [Kruglyak, 1998] proposed a model which included point mutation. They assumed slippage was linearly proportional to repeat number, and that point mutation would occur in any repeat at a constant rate a .  c for i = 1 , j = 2    ( i − 1) b for i > 1 , j = i + 1     q ij = ( i − 1) b + a for i > 1 , j = i − 1  a for i > 1 , j < i − 1      0 otherwise.  Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 10 / 24

  14. Kruglyak’s proportional slippage model Kruglyak and Durrett proved in a later paper [Durret, 1999] that the stationary distribution exists. Stationary distribution can be shown to satisfy ∞ � c π 1 = b π 2 + a π ( j ) , j =2 ∞ � b ( i − 1) π i = bi π i +1 + ia π j for i ≥ 2 . i = i +1 Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 11 / 24

  15. Purity-dependant Model We move up a dimension in the state space. ( i , j ) # repeats # interruptions AT AT AT AC AT AT = (6 , 1) Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 12 / 24

  16. Key Assumptions Effect of impurity is independent of location. = AT AT AT AC AT AT AC AT AT AT Each base pair is either ‘correct’ or ‘incorrect’. = = � = A T A C A G A A Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 13 / 24

  17. Extra Assumptions A repeat unit is either pure or impure - binary. = = � = AT AX YT YX Slippage events of length 1 only. Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 14 / 24

  18. Heuristic model development Slipped-strand mispairing Process may transition from a state ( i , j ) to ( i + 1 , j ) at a rate given by r s ( i , j ). Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 15 / 24

  19. Heuristic model development Slipped-strand mispairing Process may transition from a state ( i , j ) to ( i + 1 , j ) at a rate given by r s ( i , j ). Process may transition from a state ( i , j ) to ( i − 1 , j ) at a rate given by r s ( i , j ) ( i − j ) . i Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 15 / 24

  20. Heuristic model development Slipped-strand mispairing Process may transition from a state ( i , j ) to ( i + 1 , j ) at a rate given by r s ( i , j ). Process may transition from a state ( i , j ) to ( i − 1 , j ) at a rate given by r s ( i , j ) ( i − j ) . i Process may transition from a state ( i , j ) to ( i − 1 , j − 1) at a rate given by r s ( i , j ) j i . Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 15 / 24

  21. Heuristic model development Slipped-strand mispairing Process may transition from a state ( i , j ) to ( i + 1 , j ) at a rate given by r s ( i , j ). Process may transition from a state ( i , j ) to ( i − 1 , j ) at a rate given by r s ( i , j ) ( i − j ) . i Process may transition from a state ( i , j ) to ( i − 1 , j − 1) at a rate given by r s ( i , j ) j i . Point mutation Process may transition from a state ( i , j ) to ( i , j + 1) at a rate given by r m ( i , j ). Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 15 / 24

  22. The General Purity-Dependant Model In its most general form, our model is given by generator Q = [ q ij ] where  r s ( i , j ) β ( i ) for k = i + 1 , l = j    r s ( i , j )(1 − β ( i )) ( i − j )  for k = i − 1 , l = j  i q ( i , j )( k , l ) = r s ( i , j )(1 − β ( i )) j for k = i − 1 , l = j − 1 i     r m ( i , j ) for k = i , l = j + 1 .  Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 16 / 24

  23. The General Purity-Dependant Model (4 , 2) r s (4 , 2) 4 r m (4 , 1) r s (2 , 1) β (2) r s (3 , 1) β (3) (2 , 1) (3 , 1) (4 , 1) 2 r s (3 , 1)(1 − β (3)) 3 r s (4 , 1)(1 − β (4)) 3 4 r s (3 , 1)(1 − β (3)) r s (4 , 1)(1 − β (4)) 3 4 r s (2 , 1)(1 − β (2)) r m (2 , 0) r m (3 , 0) r m (4 , 0) 2 r s (1 , 0) β (1) r s (2 , 0) β (2) r s (3 , 0) β (3) (1 , 0) (2 , 0) (3 , 0) (4 , 0) r s (2 , 0)(1 − β (2)) r s (3 , 0)(1 − β (3)) r s (4 , 0)(1 − β (4)) Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 17 / 24

  24. Some Restrictions By making some restrictions we can judge the benefits of modeling point mutation/purity. Purity-independant model Set r s ( i , j ) ≡ r s ( i ). Models point mutation. Purity has no effect on mutation rates. Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 18 / 24

  25. Some Restrictions By making some restrictions we can judge the benefits of modeling point mutation/purity. Purity-independant model Set r s ( i , j ) ≡ r s ( i ). Models point mutation. Purity has no effect on mutation rates. One-dimensional model Set r m ( i , j ) ≡ 0 (and fix j = 0) No point mutation. No purity dependance Reduced to 1D, one-phase model. Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 18 / 24

  26. Applications We choose some specific functions r s , β, r m r s ( i , j ) = ( u 0 + u 1 ( i − 1)) c − j , 1 β ( i ) = 1+ e − ( b 0+( i − 1) b 1 , r m ( i , j ) = d ( i − j ). Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 19 / 24

  27. Applications We choose some specific functions r s , β, r m r s ( i , j ) = ( u 0 + u 1 ( i − 1)) c − j , 1 β ( i ) = 1+ e − ( b 0+( i − 1) b 1 , r m ( i , j ) = d ( i − j ). If we set c = 1 then r s ( i , j ) = r s ( i ). Tristan L. Stark (UTAS) Microsatellite Models November 5, 2014 19 / 24

Recommend


More recommend