progenitors supernovae and neutron stars
play

Progenitors, Supernovae, and Neutron Stars Yudai Suwa 1, 2 1 Yukawa - PowerPoint PPT Presentation

Progenitors, Supernovae, and Neutron Stars Yudai Suwa 1, 2 1 Yukawa Institute for Theoretical Physics, Kyoto U. 2 Max Planck Institute for Astrophysics, Garching Collaboration with: S. Yamada (Waseda), T. Takiwaki (Riken), K. Kotake (Fukuoka), E.


  1. Progenitors, Supernovae, and Neutron Stars Yudai Suwa 1, 2 1 Yukawa Institute for Theoretical Physics, Kyoto U. 2 Max Planck Institute for Astrophysics, Garching Collaboration with: S. Yamada (Waseda), T. Takiwaki (Riken), K. Kotake (Fukuoka), E. Müller (MPA)

  2. Progenitor structures-1 10 9 6 silicon/oxygen shell Woosley & Heger (2007) 5 20 M ⦿ 10 8 Entropy (k/baryon) 4 Density (g/cc) silicon shell 10 7 3 iron core 2 10 6 1 10 5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Interior Mass (solar masses) See also talk by Sukhbold and poster by Thomas Yudai Suwa, FOE 2015@NCSU 6/1/2015 2 /11

  3. Progenitor structures-2 data from Woosley & Heger (2007) 10 11 10 11 10 10 10 10 10 9 10 9 Density [g cm -3 ] Density [g cm -3 ] s12 10 8 10 8 12 M ⦿ s12 s15 15 M ⦿ s15 s20 10 7 10 7 20 M ⦿ s20 s30 30 M ⦿ s30 s40 10 6 40 M ⦿ 10 6 s40 s50 50 M ⦿ s50 s55 55 M ⦿ 10 5 s55 10 5 s80 80 M ⦿ s80 s100 s100 100 M ⦿ 10 4 10 4 0 0.5 1 1.5 2 100 1000 10000 Mass [M � ] Radius [km] pressure 1 Mass accretion rate at 300 km [M � s -1 ] s12 s15 s20 0.8 s30 s40 shock s50 0.6 P s55 s80 s100 0.4 ρ v 2 ∝ Ṁ v 0.2 0 0 200 400 600 800 1000 Time after bounce [ms] radius Yudai Suwa, FOE 2015@NCSU 6/1/2015 3 /11

  4. Explosion simulations-1: setups See Suwa et al., PASJ, 62, L49 (2010) Progenitor: 12-100 M ⦿ (Woosley & Heger 07) Suwa et al., ApJ, 738, 165 (2011) Suwa et al., ApJ, 764, 99 (2013) 2D (axial symmetry) (ZEUS-2D; Stone & Norman 92) Suwa, PASJ, 66, L1 (2014) Suwa et al., arXiv:1406.6414 MPI+OpenMP hybrid parallelized for more details Hydrodynamics+neutrino transfer ( neutrino-radiation hydrodynamics ) Isotropic di fg usion source approximation ( IDSA ) for neutrino transfer (Liebendörfer+ 09) Ray-by-ray plus approximation for multi-D transfer (Buras+ 06) EOS: Lattimer-Swesty (K=180, 220 ,375MeV) / H. Shen Yudai Suwa, FOE 2015@NCSU 6/1/2015 4 /11

  5. Explosion simulations-2: results YS, Yamada, Takiwaki, Kotake, arXiv:1406.6414 1000 s12 s15 s20 800 s30 Shock Radius [km] s40 s50 600 s55 s80 s100 400 200 0 0 200 400 600 800 1000 1200 Time after Bounce [ms] Several progenitors lead to shock expansion No monotonic trend with ZAMS mass is found What makes di fg erence? Yudai Suwa, FOE 2015@NCSU 6/1/2015 5 /11

  6. What makes difference?: Ṁ - L ν YS, Yamada, Takiwaki, Kotake, arXiv:1406.6414 Total Neutrino Luminosity [10 52 erg s -1 ] Burrows & Goshy (1993) 10 9 explode 8 7 WH07/s12 WH07/s15 6 WH07/s20 WH07/s30 5 WH07/s40 fail WH07/s50 4 marginal WH07/s55 3 WH07/s80 Time WH07/s100 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Mass accretion rate at 300 km [M � s -1 ] Low Ṁ and high L ν are achieved for exploding progenitors Accretion of multiple shells makes di fg erent dependence of L ν on Ṁ Yudai Suwa, FOE 2015@NCSU 6/1/2015 6 /11

  7. Critical curve and model trajectory e.g., Burrows & Goshy (1993) Murphy & Burros (2008) Nordhaus+ (2010) critical curve Hanke+ (2012) Couch (2013) Handy+ (2014) turning point Pejcha & Thompson (2012) Keshet & Balberg (2012) Janka (2012) Müller & Janka (2015) model trajectory Dolence+ (2015) Suwa+ (2014) • Semi-analytic expressions of trajectories available in Suwa et al. (2014) Yudai Suwa, FOE 2015@NCSU 6/1/2015 7 /11

  8. Code comparison Bruenn+ 2014 (Oak Rigde) Melson+ 2015 (Garching) Dolence+ 2015 (Princeton) Suwa+ 2014 (Kyoto- Tokyo-Fukuoka) Yudai Suwa, FOE 2015@NCSU 6/1/2015 8 /11

  9. P ROMETHEUS -V ERTEX C HIMERA Bruenn+ 2014 (Oak Rigde) GR correction GR correction Code comparison variable Eddington factor fm ux limited di fg usion Melson+ 2015 (Garching) ray-by-ray plus ray-by-ray plus Lattimer-Swesty EOS Lattimer-Swesty EOS explode in 2D explode in 2D 9 Luminosity of electron neutrinos [10 52 erg s -1 ] 8 7 6 5 4 3 s20; ZEUS (Suwa+ 2014) s20; CASTRO (Dolence+ 2015) 2 s20; CHIMERA (Bruenn+ 2014) s20; Prometheus (Melson+ 2015) 1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Mass accretion rate [M ⊙ s -1 ] CASTRO ZEUS Dolence+ 2015 (Princeton) Newton Newton fm ux limited di fg usion isotropic di fg usion source app. multi-D transfer ray-by-ray plus H. Shen EOS Suwa+ 2014 (Kyoto- Lattimer-Swesty EOS Tokyo-Fukuoka) NOT explode in 2D NOT explode in 2D Yudai Suwa, FOE 2015@NCSU 6/1/2015 8 /11

  10. How much do initial conditions matter? Starting from hydrostatic NSE cores 1D, GR, neutrino-radiation hydro code; Agile-IDSA (public code!) Neutrino-driven explosions are possible in 1D 4 Preliminary 2 Velocity [10 9 cm s -1 ] 1000 0 Radius [km] -2 -4 100 t pb =0ms -6 t pb =1ms t pb =5ms -8 t pb =50ms t pb =100ms -10 10 1 10 100 1000 10000 -100 -50 0 50 100 150 200 Radius [km] Time after boune [ms] YS, Müller+, in prep. See also poster by Yu Yudai Suwa, FOE 2015@NCSU 6/1/2015 9 /11

  11. Long-term simulations from PNS to NS NS consists of core and crust When a PNS (w/o crust) becomes a NS (w/ crust) ? From core collapse up to NS formation was followed with neut.- rad. hydro. simulation , for 67 s (C)NASA shock mass coordinate � 1 / 3 c ≈ Z 2 e 2 � 4 π ρ Y e x a T Ŵ k B 3 Zm u � � YS, PASJ (2014) Yudai Suwa, FOE 2015@NCSU 6/1/2015 10 /11

  12. Summary Progenitor structure is one of the most important ingredients for core-collapse supernova explosion initial condition mass accretion history We performed simulations of multi-dimensional neutrino- radiation hydrodynamics 4 of 9 models exploded Low- Ṁ and high L ν are favorable for explosion By performing further simulations, NS crust formation was reached from precollapse consistently (from supernovae to neutron stars) Yudai Suwa, FOE 2015@NCSU 6/1/2015 11 /11

Recommend


More recommend